PERFECT PATR-COVERINGS AND AN ALGORITHM
FOR CERTAIN (1-2) TFACTORIZATIONS OF THE

COMPLETE GRAPH K23+1

R. C. Mullin, R. G. Stanton, and D. R. Stinson

”l. Introduction.

~
Let X be a finite set. A family B of subsets of X 1is said

to be a perfect covering (or simply a covering) provided that each pair

~
of elements of X occurs in a unique set in the family B (a perfect

covering is also called a finite linear space or a pairwise balanced

ﬂesigg). Elements of X are called points, and elements of B are

In [1] the following problem was introduced. For 2 < k € v, k and

g(k)

v integers, define (v) to be the least integer b such that there

exists a perfect covering of a v-set which possesses b blocks and in
which the largest block has length k. For k = v/2, g(k)(v) was

determined in [1]; we quote the result as

THEOREM 1.1. If k = v/2, then
g8 (v) = 1+ (v-k) (Bk-v+1) /2
- k
Also, if k = (v-1)/2 1is odd, then [1] gave the result for g( )(V) as

THEOREM 1.2. If k s odd, then

g (2k41) = 1+ K(k+1)/2

For k even, the bound given in Theorem 1.2. can not be attained
(cf. [1], Lemma 5.2). In this paper, we prove that, for k even and
k > 2, then

o8 41y = 1+ k1) /2 + (/4]

where r ] denotes the usual ceiling function.
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2. A Lower Bound.
Define
2
SK(k,v) =1 + k (v=k)/(v-1)
In [2], it is shown that

O PR |

We now improve this bound slightly in the case when (v-1)/k = t, where

t 1is an integer.

THEOREM 2.1. Suppose v-1 = kt and k-1 = ut + w, where t,u, and w

are integers and 0 < w < t. Then

2 3
(k) o k™ (v-k) wk
2l + |——~ 4 2o

& () 1 v-1 (v—l)2
Proof. Let B be a covering of a v-set X which contains b blocks
and includes a block BO of length k. Let ﬁl be the family formed by
deleting BO and all points on BO. Let the blocks of ?1 be

~N

B, = {Bl,...,Bb_l},

and let the length of Bi be ki (1 <1 < b-1).

The following summations are from 1 to b-1. Clearly,

and £ki(ki—l) = (v-k) (v-k-1).

~
Also, since every point of X\B0 occurs (in B) on a block with every point

of BO’ we have
Eki > k(v-k).

Actually, it is easy to deduce from Theorem 1 of [3] that Zki=k(v—k)+5,"ki s
where X'ki denotes summation over those blocks of 3} which are also
blocks of ‘E (that is, which are disjoint to BO).

Now we calculate
1) Z(ki—t)z < (v=k) (v-k=-1) - (2t-1)k(v=k) + t2(b-1)

= (v-k) (v=1-2tk) + tZ(b-1) .
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N
Since B1 was constructed from ‘ﬁ, we have k subsets Pj of disjoint

blocks in %1 (1 € j < k) such that each point of X\B0 occurs in

precisely one block of each Pj. (Pj is made up of those blocks of 'ﬁl

which derive from the blocks of B that pass through point j on BO).

We thus have

Now

kt - (k-1)

<
I

=
I

kt - (uttw)
Hence the remainder, when v - k is divided by t, is equal to w, and so
@ & k-0l : ow.
i€ P 1
Combination of equations (1) and (2) produces

lw € (v—k) (o-1-2tk) + to(b-1)3
this simplifies to

b> 1+ (ke + (v-k) (2tk-v+1)}/t2

Now, substitute t = (v-1)/k, and use the fact that b is an integer to

obtain 9 3

v-1 (v-1)2

This is our desired result.

Corollary 2.1. g(zs)(43+l) 2 232 + s+ 1+ s/g] .
Proof. We set v =4s + 1, k = 2s; then t = 2, w = 1, and the result
follows.

3. Construction of the Coverings.

g(2)

First, we note that (5) = 10, since all blocks must have length

2. Henceforth, we assume that s > 1, and construct coverings to show that

g2 het1) = 262 4 5 + 1 4+ s/2] .
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There are two cases, depending on the parity of s, although

basically both cases are identical,

Case 1 (s even). We have 2s points on BO and 2s+1 other

on these latter

points. We need to take the complete graph K2s+l
points and obtain a complete factorization of it into 2s factors (one
for each point of BO). The normal factorization of K25+l produces
25+l  factors each of which is made up of a singleton and various pairs
(the easiest way to proceed is as in [1]; put the 2s+1 points on a
circle and, with each point i, use the set of chords perpendicular to
0i, O being the centre of the circle).

Here, we allow ourselves singletons, pairs, and triangles. Let the
2s+]l points be denoted by 0, 1, 2, ..., 2s, and let the 2s points
L, 2, ..., 2s be equally spaced around a circle. Let P(i, j) denote
the line (i,j) and all chords parallel to (i,3). Let Q(i,j) denote
two singletons i and j situated at opposite ends of a diameter,
together with all chords perpendicular to the diameter (i,3).

We define 2s factors, or classes of blocks, on the 2s+1 points
05 15 sax, 2s.

First take the s classes of blocks P(i,i+l), where 1 < i < s;
take also the s classes Q(i,i+s) where 1 <1i < s . Clearly, every
edge from {1,2,...,2s} occurs precisely once in these classes. Now,
extend these 2s classes to be classes on {1,2,...,2s} by the

following algorithm:

(1) if i is odd, change the pair (i, i+l) of P(i, i+l)
to the triangle (0, i, i+l);

(2) if i 1is even, add the singleton 0 to the set P(i, i+l);

(3) adjoin O to the singleton i+s of Q(i, i+s) for

1 <1i < s,

Denote the sets, with 0 adjoined, by P*(i, i+l), Q*(i, i+s) . We

illustrate the procedure for 2s = 8, 25 + 1 = 9, in
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Example 3.1.

1
g ?
2
7
o e’
6
L 4
5
P*(1,2) P*(2,3) P*(3,4) P*(4,5)
012 0 034 0
38 23 25 45
47 14 16 36
57 58 78 27
67 18
Q*(1,5) Q*(2,6) Q*(3,7) Q*(4,8)
1 2 3 4
50 60 70 80
28 13 24 17
37 48 15 26
46 57 68 35

1 A2...A8
and combining each Ai with one of the 8 resolutions of {0,1,...,8}

Clearly, we can now show that g(8)(8+9) = 39 by taking a block A

just displayed.

The method of the illustration works in general. We use a long block
AlAZ"'AZS and associate each Ai with one of the 2s classes P*(i,i+l)

and Q*(i,i+s). The covering thus formed contains the following blocks:



(1) one block of length 2s;

(2) s/2 blocks of length 4 formed from the s/2 triangles of
P*(i,i+1), i odd;

(3) 3s/2 blocks of length 2;

(4) 252—3/2 blocks of length 3.

The total number of blocks is 232 + 3s5/2 + 1, and this can be written as

232+s+l+ S/Z_l.

Case 2 (s odd). We use a procedure similar to that in Case 1. We create

s classes P(i, itl) for 1 < i < s and s classes Q(i,i+s) for

1 =1 < s. The adjunction of the extra point 0 proceeds as follows.
P*(i,i+l) is formed by using the triangle (0,i,i+l) when i is odd;
P*(i,i+l) contains a singleton O when i is even. As before,
Q*(i,i+s) is formed by replacing the singleton i+s by the pair (0,i+s),

but there is one variation. We do this only for i = 2.

The set Q(1,1+s) 1is extended to Q*(1,1l+s) by adjoining a singleton

0; this leaves 3 singletons in Q*(1,1+s).

We illustrate the procedure for 2s=6, 2s+1=7, in

Example 3.2. 1
'
6
2
5/
3

O
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P*(1,2) P*(2,3) P*(3,4)

012 0 034
36 23 35
45 14 16
56
Q*(1,4) Q*(2,5) Q*(3,6)
0 2 3
50 60
4 13 15
26 46 24
35

We thus have a construction showing that g(é)(6+7) = 24 by taking
a block AlAZ"'A6 and combining each Ai with one of the 6 resolutions

of {0,1,...,6} just displayed.

The method of the illustration works in general. We use a long
block AlA?"'AZS and associate each Ai with one of the 2s classes
P*(i,i+l) and Q*(i,i+s). The covering thus formed contains the following

blocks:

(1) one block of length 2s;

(2) (s+1)/2 blocks of length 4;

(3) 3(s+1)/2 blocks of length 2;
4) 252—(S+3)/2 blocks of length 3.

The total number of blocks is 232 + (3s+1)/2 + 1, and this can be

written as

25 + s + 1+ [a/7] .

4., Conclusion.

In Section 2, we showed (Corollary 2.1) that

k)



g(zs)(dsﬂ) > 252 4 s+ 1+ r;;/z—l ;

In Section 3, we gave a construction which displayed a covering that

achieved this lower bound.

THEOREM 4.1.

232 + s + 1

Hence, we may state our results as

The perfect covering number g(zs)(4s+l) is equal to

& r;/§1 , for s> 1.
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