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Abstract

Zigzag functions were defined by Brassard, Crépeau and Santha
[1] in connection with an application to the construction of oblivious
transfers (a useful tool in cryptographic protocols). They proved
that linear zigzag functions are equivalent to self-intersecting codes,
which have been studied by several researchers.

In this paper, we begin an investigation of general (linear or non-
linear) zigzag functions. In particular, we prove some bounds (i.c.,
necessary conditions for existence of zigzag functions) which gen-
eralize known bounds for linear zigzag functions.

1 Introduction and Definitions

Zigzag functions were defined by Brassard, Crépeau and Santha [1]. We
review basic concepts and definitions now.

Let I, denote the finite field with ¢ elements. Suppose that f : (Fg)" —
(F,)™, wheren > m. Let I C {1,...,n}. We say that f is unbiased with
respect to I if for all possible choices for (z; : i € I) € (Fy)!l, and for
every (y1, . ..,Ym) € (F,)™, there are exactly ¢"~™~!| choices for (; :
ie{1,...,n}\I) € (Fy)" 1l such that f(z1,...,2s) = (Y1, Ym)-

We give an alternative way to define the unbiased concept, which is
based on the approach used in [11] and [6] to study correlation-immune
and resilient functions. For any y € (IF,)™, define A, to be the array
whose rows consist of all the n-tuples in f~!(y). Index the columns of 4,
by1l,...,n,and forany I C {1,...,n}, let A,|r denote the restriction of
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A, to the columns in I. Then f is unbiased with respect to I if and only
if, for every y € (F,)™, Ay|r contains every |I|-tuple exactly gl
times.

Example 1.1 Consider the function
f(z1, 22,23, 24) = (21 + 22+ 23,22+ 23+ z4),

where all arithmetic is performed in Fy. The arrays A, (y € (F2)?) are as
follows:

A,0) A,) Aq,0) Aq,)
0 00O 0 0 01 1 00O 1 0 01
1 01 1 1 010 0 011 0 010
1 1 01 1 1 00 01 01 01 00
01 10 0111 1 110 1 1 11

The sets I with respect to which f is unbiased are all sets of cardinality
one, and all sets of cardinality two except {1, 4}.

Suppose that, for every I C {1,.. .,n}, f is unbiased with respect to
at least one of I and {1, ...,n}\I. Then f is said to be a zigzag function,

and denoted as an (n, m, q)-ZE.
Note that the example considered above is a (4, 2, 2)-ZF.
Before proceeding, we observe that the case m = 1 is trivial: the

function f defined as
f(mla"'vzcn) =21 + -t 2,

where addition is performed in Fy, is an (n,1, ¢)-ZF for any n and ¢.
Therefore, in the remainder of the paper, we will be interested only in
(n, m, q)-ZF withm > 2.

The fundamental problem is to determine, for given ¢ and m, the min-
imum n such that an (n, m, ¢)-ZF exists. This problem will be studied in

later sections of this paper.

2 Linear Zigzag Functions

In this section, we discuss linear zigzag functions, concentrating on the
connections between linear zigzag functions and linear codes.
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An (n,m, q)-ZF, f, is said to be linear if there exists an m X n matrix
M with entries from F, such that f(z) = M7 for all € (F,)". An
m-dimensional subspace C of (F,)™ is said to be an [n, m] g-ary code. An
m X n matrix is said to be a generating matrix for C if its rows form a basis
for C. An (n —m) X n matrix is said to be a parity-check matrix for C if its
rows form a basis for the dual code, C* (i.e., the orthogonal complement
of C).

Lemma 2.1 Let M be a generating matrix for an [n, m| g-ary code, C,
and let H be a parity-check matrix for C. The function f(z) = M7 is
unbiased with respect to I C {1,...,n} if and only if the columns of H
indexed by I are linearly independent.

Proof  The result follows easily from the facts that f~1(0,...,0) = C*,
and f~(y1,...,Ym) isacoset of CL, forany (y1,...,¥m) € (Fg)™. O
Lemma 2.1 provides a fairly convenient way of checking to see if a

given linear function is a zigzag function. We illustrate with an example.

Example 2.1 Suppose n = 6 and m = 3, and consider the function
f(z) = 2MT, where

110100
M=1]0110 1.0
101001
The parity-check matrix of the code generated by M is the matrix
100101
H=|1010110
001011

All pairs of columns of H are linearly independent. The only sets of three
columns of H that are linearly dependent are {1, 2,4}, {1, 3,6}, {2, 3,5}
and {4, 5, 6}. It follows that f is a (6, 3, 2)-ZF.

Letz = (21,...,2,) € (F,)™. The support of z, denoted supp(z), is
defined as supp(z) = {7 : 2; # 0}. We provide an alternative formulation
of Lemma 2.1 using the idea of support.
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Lemma 2.2 Let M be a generating matrix for an [n, m] g-ary code, C.
The function f(¢) = eMT is unbiased with respect to I C {1,...,n}
if and only if there does not exist a non-zero codeword y C C such that

supp(y) C I.

Proof. Let H be a parity-check matrix for C. The result follows easily
from Lemma 2.1, using the fact that there exists a non-zero codeword y €
C such that supp(y) C I if and only if the columns of H indexed by I are
linearly dependent. 0

An [n, m] g-ary code C is said to be intersecting if, for every z,y € C
such that z,y # (0, ..., 0), supp(z) N supp(y) # 0. The following result,
first proved in [1], says that linear zigzags are equivalent, in a strong sense,
to intersecting codes. We provide a proof using Lemma 2.2.

Theorem 2.3 Let M be an m X n matrix with entries from Fy. The func-
tion f(z) = e M7 is an (n,m, q)-ZF if and only if the linear code with
generating matrix M is an intersecting [n, m] q-ary code.

Proof. Let C be the code with generating matrix M. Suppose that C is
intersecting, and let I C {1,...,n}. Suppose that f is biased with respect
to both I and {1, ...,n}\I. Then, from Lemma 2.2, there exist non-zero
codewords y, z € C such that supp(y) C I and supp(z) C {1,...,n}\I.
This contradicts the fact that C is intersecting, so we conclude that f is a
zigzag function.

Conversely, suppose that f is a zigzag function. Lety € C, y #
(0,...,0). By Lemma 2.2, f is biased with respect to supp(y). Therefore
f is unbiased with respect to {1, ...,n}\supp(y). Hence, from Lemma
2.2, there does not exist a non-zero codeword z € C such that supp(z) C
{1,...,n}\supp(y). Therefore C is an intersecting code. 0

Various interesting results on linear zigzag functions can be obtained
by invoking known results on intersecting codes, which are studied in [7, 9,
3, 10, 4, 1], for example. The best (asymptotic) necessary condition for the
existence of linear zigzag functions follows from the observation that an
intersecting [n, m] g-ary code has minimum distance at least m, together
with the MRRW bound ([8, Ch. 17]). We will return to this later.
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3 Nonlinear Zigzag Functions

We begin an investigation of arbitrary (i.e., linear or nonlinear) zigzag
functions. Suppose that f : (Fy)™ — (Fg)™.

Lemma 3.1 If f is unbiased with respect to I, then |I| < n —m.

Proof. This follows immediately from the fact that g"~™ M| must be an
integer. 0

Lemma 3.2 Ifan (n,m, q)-ZF exists, thenn > 2m — 1.

Proof. Apply Lemma 3.1 with |I| = |%]. Then m < [%], and hence
n>2m—1. 0

The following is our main necessary existence condition for the exis-
tence of zigzag functions.

Theorem 3.3 If f is an (n,m, q)-ZF, then f is unbiased with respect to I
for all I such that |I| =m — 1.

Proof. Let|I| = m — 1. Since f is a zigzag function, f is unbiased with

respect to at least one of I and {1,...,n}\I. Since n — |[I| >n—m, fis
biased with respect to {1, ...,n}\I, by Lemma 3.1. Therefore, f must be
unbiased with respect to I. O

Suppose that 1 < t < k, and v > 2. An orthogonal array OA(t, k,v)
is a vt x k array A of v symbols, such that within any ¢ columns of
A, every possible t-tuple of symbols occurs in exactly A rows of A. An
orthogonal array is simple if it does not contain two identical rows. A
large set of orthogonal arrays OA, (¢, k, v), denoted LOA\(t, k, v), is a set
of v¥=*/ X simple OA\(t, k, v), such that every possible k-tuple occurs as
a row in exactly one of the orthogonal arrays in the set.

The following is an immediate corollary of Theorem 3.3.

Corollary 3.4 If there is an (n,m, q)-ZF with m > 2, then there is an
LOA jn—2m+1(m — 1,m, q), and hence an OAgn—2m+1 (m—-1,n,q).
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3.1 Thecasen =2m —1

In the special case when n = 2m — 1, we can say more. The following
theorem is proved in the same way as [11, Theorem 2.1].

Theorem 3.5 An (2m — 1,m, q)-ZF with m > 2 exists if and only if an
LOA;(m — 1,2m — 1, q) exists.

Proof.  Suppose first that a (2m — 1, m, ¢)-ZF exists. Applying Corollary
3.4, we see that an LOA; (m — 1,2m — 1, ) exists.

Now, suppose that an LOA;(m — 1,2m — 1, ¢) exists. Denote the
g™ arrays in the large set as Ay, y € (F;)™, and think of each Ay as
being composed of a set of (2m — 1)-tuples from (F,)*™~'. Now define a
function f : (F,)?™~! — (F,)™ by the rule

f(:Bl, oo ey me_l) = (yl, w0 g ym) E=4 (221, €58 :c2m_1) € A(yh___’ym).
The resulting function is unbiased with respect to any set of size m — 1.
Since n = 2m — 1, it follows that f is a (2m — 1, m, ¢)-ZF. O

Remark A (2m—1,m,q)-ZFis equivalenttoa (2m-1,m,m-1,q)-
resilient function (see [6, Theorem 5.2]).

We can use the above theorem to obtain necessary conditions for the
existence of zigzag functions withn = 2m — 1.

Corollary 3.6 If ¢ < m — 1 and m > 2, then there does not exist a
(2m — 1,m, q)-ZF.

Proof. The Bush bound for orthogonal arrays (see, for example, [, p.
180]), states that if an OA; (¢, k, q) exists with ¢ < ¢, thenk < ¢+ 1.
Hence, if a (2m — 1, m, g)-ZF exists with ¢ < m — 1, then 2m — 1 < m,
orm < 1. Since m > 2, we have a contradiction. o -

The following existence result is given in [10, Theorem 1]. It uses
Reed-Solomon codes.

Theorem 3.7 For every prime power q and every integer m > 2 such that
q > 2m — 2, there exists a (linear) (2m — 1,m, q)-ZF.
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3.2 A General Bound

In general, we can use Corollary 3.4 to obtain bounds for zigzag functions
that are stronger than the bound of Lemma 3.2. Applying the classical Rao
bound for orthogonal arrays (see, for example, [5, p. 180]), the following
is obtained.

Theorem 3.8 Suppose there exists an (n, m, q)-ZF. Then

( m-—1

=
(j) (g—1)° if m is odd
1=0
m=2
e n . n—1 m
Z (i>(q_ 1y (m__Q)(q —1)2  ifmiseven.
\ =0 2

We give an example to illustrate Theorem 3.8.

Example 3.1 Suppose that n = 16, m = 7 and ¢ = 2. Theorem 3.8 tells
us that a (16, 7, 2)-ZF exists only if

3
16
piefing .
—;(i)

Since
216-7 — 512

and
3

1
> ( iﬁ) =1+ 16 + 120 + 560 = 697,
=0
we have shown that a (16, 7, 2)-ZF does not exist.

4 Bounds on Binary Zigzag Functions

Define n*(m) to be the minimum 7 such that an (n, m, 2)-ZF exists, and
define nf,(m) to be the minimum n such that a linear (n, m, 2)-ZF exists.
We provide a table summarizing known results on nj (m) and n*(m). Of
course it is always the case that nf,(m) > n*(m). The values in Table 1 in
the column “linear zigzag” are all taken from [1].
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Table 1: Results on the minimum 7 such that an (n, m, 2)-ZF exists

m | linear zigzag arbitrary zigzag
[1] Theorem 3.8 exact values

2 nf, =3 n* >3 n* =3

3 nj, =6 n*>6 n* =26

4 np, =9 n*>8 n*=9

5 ny =13 n* > 12

6 ny, = 15 n* > 14

7 ny, < 21 n* > 17

8 nf, < 25 n* > 19

9 nf, <29 n* > 23

4.1 The Nonexistence of an (8,4, 2)-ZF

The case m = 4 is an interesting one. It was previously known that a
(linear) (9, 4, 2)-ZF exists, and no linear (8,4, 2)-ZF exists. Theorem 3.8
does not rule out the existence of a (non-linear) (8, 4, 2)-ZF (it cannot do
so since an OA»(3, 8, 2) does in fact exist). In this section, we prove that
no (8, 4, 2)-ZF exists.

Suppose that f is an (8,4,2)-ZE We will study the array A(g ), as
defined in the Introduction. Without loss of generality, we will assume that
(0,...,0) is one of the rows of A(g0). By viewing A(g ) as a set of 8-
tuples, we can think of it as an (8, 16, d) code, which we will call C, where
d denotes the minimum Hamming distance of C. We consider two cases,
depending on the value of d.

411 Casel:d>4

The punctured code is a (7, 16, 3) code, which is perfect. (It has the same
parameters as a Hamming code, but recall that we are not assuming that
it is linear.) This code is distance invariant, and its weight and distance
distributions coincide (see [8, Ch. 6]). It can be shown that, in C, every
codeword is at distance eight from exactly one codeword and at distance
four from all other codewords.

The function f cannot be unbiased with repect to all sets of cardinalty
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four, for then A g o) would be an OA; (4, 8,2), which can be shown not to
exist by the Rao bound. Let us suppose without loss of generality that f
is biased with repect to {1, 2, 3,4}, and therefore unbiased with repect to
{5, 6,7, 8}. It follows that there are two codewords in C which agree in the
first four coordinates. These codewords must have distance four, so they
look like

(zl,wz,w3,m4,$5,$6,$7, zS) and
(121, T3, 23,24, 1 — T3, 1—2g, 1 —27,1.— z8)-

Since each codeword is at distance eight from exactly one codeword, we
obtain two more codewords:

(1—:1:1,1——:c2,1—z3,1—:c4,1—a:5,1—:c6,1—:z:7,1—.'c8) and
(1_1:1:1_ 232,1— 233,1—:134,235,136,27,238).

However, we have now found codewords that agree in the last four co-
ordinates, which contradicts the fact that f is unbiased with repect to
{5,6,7,8}. We conclude that d > 4 cannot occur.

412 Case2:d<3

In this case, there must be two codewords that agree in at least five coor-
dinates. So, without loss of generality, we have two codewords that look
like

(2}1,132,233,224,135,(36,237, zS) and (y17y2;y3,$4,335;736,?37,738)-

It follows that f is biased with respect to any 4-subset of {4,5,6,7,8}.
Therefore, f is unbiased with respect to the following sets: {1,2, 3, 4},
{1,2,3,5},{1,2,3,6},{1,2,3,7}and {1, 2, 3, 8}. As well, f is unbiased
with respect to any set of size three.

We prove that this is impossible by using the same idea that is used to
prove the Rao bound. Let A’(o,o) be constructed from A g o) by replacing

every entry z by (—1)®. Thus A/(0 0) has entries +1. Denote the entry in
row 7 and column j of A'(0 0) bya;; (1 <i<16,1 <7 <8).
ForasetI C {1,...,8},defineavector (I) = (¢(I)1,---,9(I)16) €

R 1€ by the rule
¢ =[] @4
JjeI
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By convention, we will define

¢(0) = (1,...,1).

Let (z, y) denote the usual inner product of two vectors z,y € R16,
Now, it is easy to see that

(6(1),8(J)) =0
provided that I # J and f is unbiased with respect to I U J. Let
J={Ic{1,....8}: 1| <1}U{{1,i}:2<i<8FU{{2,3}}.

By the observation made above, the vectors in J are mutually orthogonal,
and hence they are linearly independent. However, |J| = 9+ 7+ 1 =
17, so we have found 17 linearly independent vectors in R, which is a
contradiction. We conclude that d < 3 cannot occur.

Combining the two cases, we obtain the main result of this section.

Theorem 4.1 There does not exist an (8, 4, 2)-ZF.

4.2 An Asymptotic Bound

Our last result is an asymptotic lower bound on n*(m), obtained by appeal-
ing to Corollary 3.4 in conjunction with the MRRW bound for orthogonal
arrays [2, Theorem 3.5]. The result is the following.

Theorem 4.2

limint "™ 5 3.5977.
m

m—0o0

Theorem 4.2 extends the result proved in the linear case in [7] (this is
the result mentioned at the end of Section 2) to the nonlinear case. As in
the linear case, the constant 3.5277 is computed as 1/8, where § ~ .28347
is the solution to the equation

J:h(%— 5(1-5)>,

where h is the binary entropy function defined as

h(z) = —zlog, z — (1 — z) logy(1 — ).
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S Summary

In [1], the authors ask if there is any parameter situation where there exists
a nonlinear zigzag function, but no linear zigzag function exists. Although
we have not been able to answer this question, we have generalized several
bounds on linear zigzag functions to the general (nonlinear) case.
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