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Abstract

In this expository note, we exhibit a duality between linear programming
bounds for codes and orthogonal arrays that was pointed out by Levenshtein
in [7]. This duality implies that whenever a linear programming bound for
a code is derived, a corresponding bound for orthogonal arrays is obtained
“for free”, and vice versa. We give an elementary proof of this result which
follows from the observation that the same linear program can be used to
obtain bounds for both codes and orthogonal arrays. Then we survey the
dual pairs of bounds that can be obtained as a consequence.

1 Introduction

An (n, M) binary code is a set C of M binary vectors of length 7. C is said to
have distance d if d is the minimum hamming distance between any two distinct
vectors in C. The classical Hamming bound for binary codes [6] was proved in

Bulletin of the ICA, Volume 22 (1998), 17-24



1950. It states that

i=0
if C is an (n, M) binary code having odd distance d. This is easily proved by
observing that the M spheres of radius (d — 1)/2, whose centres are the vectors
in C, are disjoint.

An (n, N) binary orthogonal array of strength t is an N X n binary array, D,
such that any set of ¢ (or fewer) columns of D contains each binary ¢-tuple exactly
N/2! times, and t is the largest integer having this property. The classical Rao
bound for binary orthogonal arrays [10] was proved in 1947. It states that

w23 (%)

if D is an (n, V) binary orthogonal array of even strength ¢.

We sketch a fairly easy proof of the Rao bound: First, replace every entry ¢
in D by (=1)% (hence 1 becomes —1 and 0 becomes 1). Now, let Dy,..., D,
be the columns of D, considered as vectors in RY. Construct all the vectors
that can be formed as the componentwise product of at most ¢/2 vectors chosen
from Dy, ..., D,. (This includes the all-ones vector, which is the componentwise

product of none of these vectors.) The resulting set of Z?:o () vectors can be
shown to be mutually orthogonal, and hence they are linearly independent vectors
in RY . The bound follows.

The Hamming and Rao bounds have an obvious similarity in form, though
the proof methods given above seem to be completely different. The purpose
of this note is to explore the relationship between these and other pairs of “dual
bounds”. The link is provided by the linear programming bounds due to Delsarte.
We describe the basic theory we need in the next section. The main result on dual
bounds is proved in Section 3, and a short survey of dual bounds is provided in
Section 4.

2 Delsarte theory

In this section, we review the basic results of Delsarte theory [3] that will allow
us to prove our results on linear programming bounds. This theory can be found
in standard textbooks such as MacWilliams and Sloane [8].

Suppose C is an (n, M) binary code. The distance distribution of C is defined
to be the sequence (Ao, A1, ..., Ay), where

A-i — %l{(u,v) ‘u,v € C,d(u,v) = Z}I,
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i =0,...,n, where d(u,v) is the hamming distance between two vectors u and
v. The following properties are easily verified:

AO = 1a (1)
A; >0 for0<i<n, and 2)
Observe that C has distance d provided that A; = 0 for1 < i < d -1, and

Ay > 0.
Let k be a non-negative integer, and let Py (z) be the Krawtchouk polynomial

defined as follows:
5 z\ /n—x
= -1)7(" P
]Z::O( ) (J) (k - ])

The dual distance distribution of C is defined to be (Ag, A7, - .-, A,), where

/ 1
A= 57 > A;Pi(3),
j=0
i =0,...,n. We will express this notationally as

A Ay, .. AL) = Kr(Ag, Ar, ..., An).
0 1 n

The following properties, analogous to (1), (2) and (3), were proved by Del-
sarte:

A= 1 &)

A;>0 for0<i<n, and (5)
., ,oon

Ag+ A +... +4, =15 (6)

Delsarte further showed that Kr is an involutory transformation:
Kr(Ag, Ay, ..., Ay) = (Ao, A1, ..., Ap). (7)

If A =0forl1<i<d —1and A > 0, then d s called the dual distance
of the code C. Suppose we write the vectors in C as rows of an M x n array, D.
Delsarte showed that any set of 7 < d — 1 columns contains each r-tuple exactly
M /2" times, and d is the largest integer with this property. In other words C is
an (n, M) binary orthogonal array of strength ¢ = d — 1. Thus, the strength of D
(as an orthogonal array) is specified in terms of the dual distance of C.
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3 Linear programming bounds

Let d and n be positive integers such that d < n. We employ the following linear
program, L(n, D), which is identical to the one considered in [9].

Maximize S = xg + 1 + - - - + z,, subject to

23():1
2; =0 forl1<i:<D-1
z; >0 forD<i<n

n
> z;Pi(j) >0 for0<i<n.
J=0

The following is our main result.

Theorem 3.1 Suppose that C is an (n, M) binary code. Then the following hold:

1. Let Sopt be the optimal solution to L(n,d). If C has distance d, then M <
Sopt-

2. Let Sopt be the optimal solution to L(n,d ). If C has dual distance d, then
M > 2™/Sopt.

Proof. Let (Ao, Ay, ...,Ay) be the distance distribution of an (n, M) binary
code C having distance d, and let (A;), All, ..., A.) be the dual distance distribu-
tion of C.

The first assertion is proved in [9], as follows. We claim that (Ao, ..., A,) is
a feasible solution for L(n, d). That the constraints of L(n, d) are satisfied follows
immediately from (1), (2) and (5), and the fact that C is assumed to have distance
d. Then, from (3), the resulting value of the objective function is M, so the first
assertion follows.

To prove the second assertion, we show that (Ay, . .., A.) is a feasible solu-
tion for L(n, d'). This follows in a similar way from (2), (4), (5) and (7). Then,
from (6), the resulting value of the objective function is 2" /M, so the second
assertion follows, as well. 0

In [7, Corollary 2.9], Levenshtein proves an equivalent result in a slightly
different way. Levenshtein begins with two LPs, one for codes and one for or-
thogonal arrays (which are referred to as “designs”). Given a polynomial which
provides an optimal solution for one LP, it is shown how to construct a dual poly-
nomial which provides an optimal solution for the other one. From the way in
which the dual polynomial is constructed, it can be verified that the product of the
optimal solutions of the two LPs is 2™.

20



The novelty of our approach is in using the same LP for both codes and or-
thogonal arrays. As a consequence, the duality between the LP bounds for codes
and orthogonal arrays becomes completely transparent.

Bounds on the optimal solution Sopt for the LP L(n, D) are usually obtained
by finding a feasible solution in the dual LP, L*(n, D). If S* is the value of the
objective function at any feasible solution of L*(n, D), then S* > Sopt. Now,
applying Theorem 3.1, we see that any such value S* simultaneously yields an
upper bound on the size of a binary code with distance d = D, and a lower bound
on the size of a binary orthogonal array with strength D — 1 (i.e., dual distance
d = D). We give several examples of pairs of bounds obtained in this way in the
next section.

4 Some pairs of dual bounds

Let M (n,d) denote the maximum M such that an (n, M) binary code with dis-
tance d exists. Let N(n,d ) denote the minimum M such that an (n, M) binary
code with dual distance distance d' exists (i.e., N (n, d') is the minimum number
of rows in a binary orthogonal array of strength d — 1 having n columns).

We now proceed to state various bounds which follow from Theorem 3.1,
using known upper bounds on Sopt(n, D). (All the upper bounds on Sopt(12, D)
that we use can be found in [8], unless otherwise indicated.) We start with the
Singleton bounds.

Theorem 4.1 (Singleton bounds) The following bounds hold:
Mn,d)<2*  and  N(n,d)>2'"".

The term “Singleton bound” refers to the bound for codes. The corresponding
orthogonal array bound is completely trivial.

Let us turn now to the Plotkin bounds.

Theorem 4.2 (Plotkin bounds) Suppose that d > n/2 and d > n/2. Then the
following bounds hold:

n2n—1

M(n,d) < —22 ad  Nmd)z2" -

—2d—n

It is interesting to note that, although the Plotkin bound for codes has been
known since 1951 [8, p. 741], the corresponding orthogonal array bound was only
proved quite recently, by Friedman [4]. We also observe that a simple formula for
the optimal solution of the LP L(n, D) was obtained in [2] for a large class of
parameters. To be precise, if D is even and D < n < 2D — 1, then it was
proved in [2, Theorem 8.1] that Sopt(n,D) =2D/(2D — n). This means that the
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bounds of Theorem 4.2 are equivalent to the linear programming bounds in these
parameter situations.

We proceed to the Hamming and Rao bounds. The Hamming bound refers to
codes while the Rao bound [10] is the corresponding bound for orthogonal arrays.

Theorem 4.3 (Hamming-Rao bounds) Suppose thatd and d are odd, d = 2e+
landd = 2e + 1. Then the following bounds hold.:

gn . -
M(n,d) £ =+ and N(n,d)ZZ(T}).
>izo (1) Pl

This theorem can also be used to obtain bounds when d or d are even. It is

well-known that
M(n,d)=M(n—-1,d-1)
if d is even; and ) )
N(n,d)=2N(n-1,d —1)

if d is even. The bounds are obtained by applying these relations in conjunction
with Theorem 4.3.

Finally, we look at the MRRW bounds, due to McEliece, Rodemich, Rumsey
and Welch [9]. First, we consider the explicit version of their bounds, which derive
from a bound on S,y (n, D) given as [9, Eq. (3.13)].

Theorem 4.4 (MRRW bounds) Suppose that d,d > z\°, where z\° is the
smallest root of Ps(z), and suppose that s < n/2. Then the following bounds
hold:
1 2 i 2n+1 1
M(n,d) < (") B 2 g d)a el
s)2(s+1) (M) (n+1)?
Further study of the values of the smallest roots of the Krawtchouk polynomi-
als leads to asymptotic bounds, which we describe now. For a real number é such
that 0 < § < 1, define the binary entropy function

h(z) = —zlog,(z) — (1 — z)logy(1 — z).

For 0 < § < 1, define
R(8) = limsup 282 M (m:07),
n—o0 n
and for0 < § < 1, define
! Y & N 6
R(8) = 1iminfw.
n—o0 n

We now state the bound for codes proved in [9], and the corresponding result for
orthogonal arrays.
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Theorem 4.5 (Asymptotic MRRW bounds) Let 0 < ¢ < 1 and0 < § < 1.
Then the following bounds hold:

R(6)§h(%— 5(1-5)) il R’((s')z1—h(%—,/5'(1—5')>.

Other examples of dual pairs of bounds can be found in the paper by Lev-
enshtein [7]. As well, most of the bounds can be extended in a straightforward
manner to codes and orthogonal arrays over non-binary alphabets.

5 Comments

Our approach to dual pairs of bounds first appeared in [5], the PhD thesis of the
second author, in 1994 (it was also mentioned in Bierbrauer, Gopalakrishnan and
Stinson [1, p. 253]). This exposition is based on the treatment in [5].
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