A Short Proof of the Non-Existence of Certain
Cryptographic Functions

K. Gopalakrishnan

Department of Computer Science
Wichita State University
Wichita KS 67260

D. R. Stinson

Department of Computer Science and Engineering and
Center for Communication and Information Science
University of Nebraska - Lincoln
Lincoln NE 68588

ABSTRACT. Several criteria have been proposed as desirable for
binary cryptographic functions. Three important ones are bal-
ance, correlation-immunity and higher order strict avalanche
criterion. Lloyd [7] has shown that there are no balanced, un-
correlated functions which satisfy the strict avalanche criterion
of order n — 2. In this note we give a short proof of this result
using elementary combinatorial arguments. The proof relies on
the solution of a recurrence relation that seems to be of interest
in its own right.

1 Introduction

In this note, we will consider only functions of the form f : [GF(2)]" —
GF(2). Several criteria have been proposed in the literature as desir-
able for such cryptographic functions. Three important ones are balance,
correlation-immunity and higher order strict avalanche criterion. In this
section we shall define these three properties.

A function is said to be balanced if, when all input vectors are equally
likely, the output is equally likely to be 0 or 1. In other words, f is balanced

if and only if
Z f(z)=2""L
z€[GF(2)]"
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This is an important property for almost any type of cryptographic func-
tion.

A function is said to be correlation-immune of mth order if knowledge of
any m bits of the input vector does not give the adversary any advantage in
predicting the output bit. The property of correlation-immunity is impor-
tant in stream-ciphers, since combining functions which are not correlation-
immune are susceptible to ciphertext-only attacks. Correlation-immunity is
also desirable in the construction of S-boxes. Correlation-immune functions
were defined by Siegenthaler in [10] and further studied in [4], [9], [1] and [3].
In this note, we will only be considering first order correlation-immunity.

Lemma 1.1 Let f : [GF(2)]* — GF(2) be a function. Then f is balanced
and correlation-immune if and only if for every i, 1 < i < n, and for every
z € GF(2), we have

Z f(z)=2""2

{z€[GF(2)]": z;=2}

Proof: Immediate. a

A function is said to satisfy the strict avalanche criterion (SAC), if the
output bit changes with probability one half whenever a single input bit is
complemented. In other words, f satisfies the SAC if and only if for every
i, 1 <1 <mn, we have

Y. (f@)+ f(z@®c)mod2) =27,

z€[GF(2)|"

where @ denotes bitwise addition in GF(2) and ¢; is the vector of length n
with a 1 in the ith position and 0 elsewhere. The strict avalanche criterion
was introduced by Webster and Tavares [11] in connection with the study
of design of S-boxes.

The notion of strict avalanche criterion was extended by Forre [2] to
consider subfunctions obtained from the original function by keeping one
or more bits constant. This is also important cryptographically because, in
a chosen plaintext attack, the cryptanalyst could arrange for certain input
bits to be kept constant. Forre defined strict avalanche criterion of order
k, where 0 < k < n — 2 as follows: A function f : [GF(2)]* — GF(2)
satisfies the SAC of order k, where 1 < k < n—2, if and only if any function
obtained from f by keeping k of its input bits constant satisfies the SAC
(for any choice of the positions and of the values of constant bits).

Lloyd has shown [7] that there are no balanced, correlation-immune func-
tions that satisfy the strict avalanche criterion of order n — 2. In this note,
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we shall prove this result in a simple manner using elementary combina-
torial arguments. The proof relies on the solution of a recurrence relation
that seems to be of interest in its own right.

2 Proof of Non-existence

Lloyd [6] has characterized the functions that satisfy the SAC of order n—2.
The algebraic normal form (ANF) of a function is merely the expression
of the function in GF(2) sum-of-products form. An elegant version of the
same characterization, in terms of the algebraic normal form of the function,
is given in [7, p. 226]. We record this version as the following theorem.

Theorem 2.1 Let f : [GF(2)]* — GF(2), where n > 2. Then f satisfies
the SAC of order n — 2 if and only if

1<i<j<n

flz)= (ao+al:v1+azz2+...+a,.:c,,+ Z zgzj) mod2 (1)

fo‘r some ag, ay, ... ,a, € GF(2).

We now proceed to simplify the ANF without any loss of generality.
It is easy to observe that a function f possesses all the three properties
if and only if the function g defined by g(z) = 1 + f(z) satisfies all the
three properties. Hence, without loss of generality, we may assume that
ao = 0. Further, a function f possesses all the three properties if and only
if for every permutation = : {1,2,...,n} — {1,2,...,n}, the function g
defined by

g(z1,x2,. . yTn) = f(zﬂ’(l)ix‘ﬂ'(2)l cee )zﬂ’('n))7

also has all the three properties. Thus reordering the input variables does
not affect the properties. Suppose exactly r of the coefficients a1, a2,... ,an
are ones and the rest are zeroes. By appropriately renaming the variables
the algebraic normal form of equation (1) reduces to

f@)=|z1+z2+...+2r + Z ziz; | mod 2 2
1<i<j<n

forsomer, 0 <7 <n.

131



Let Sy denote the number of vectors = € [GF(2)]™ such that f(z) =0.
That is,

Spr=z€[GF)":z1+z2+ ...+ 2, + Z z;z; = 0 mod 2
1<i<j<n

Since f is both balanced and correlation-immune, from Lemma 1.1 we
infer that for every 4, 1 < < n, and for every z € GF(2),

> fl@)=2""2
{z€[GF(2)]": z;=2}

This condition can be expressed equivalently by the following two condi-
tions. For every i, 1 <1 < n, it must be the case that

> fig) = &° ®3)
{z€[GF(2)]: z;=0}

> f@ = 27t (4)
z€[GF(2)"

It is easy to observe from the algebraic normal form (2) of f, that there
are only two “types” of variables. That is, it is sufficient to consider only
the two cases 1 = 1 and i = r + 1 in condition (3) instead of every i,
1 < i < n. Setting i = 1 in condition (3) yields

Sp-ig-1=2" 2
and setting i = r + 1 in condition (3) yields
Sp_1,r=2""2,
Note that condition (4) can be expressed as
Spr=2""1,
We summarize the above discussion as the following lemma.

Lemma 2.2 There ezists a function f : [GF(2)]* — GF(2), which is
balanced, correlation-immune and satisfies the SAC of order n — 2, if and
only if the following three conditions are met simultaneously for some r,
0<r<n.

Sn—l,r = 2"_2
Sp-1g-1 = 272
Sn,r = 2"_1
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We now proceed to derive a recurrence relation for Sy,

Any vector z € [GF(2)]" has either z,y1 = 0 or z,4; = 1. Suppose
Z,41 = 0. Then the function f reduces to a function g : [GF@)*! —
GF(2) whose algebraic normal form is given by

1<i<j<n, i,j#r+1

g9(z) = ($1+22+---+-‘Br+ Z .'c,a:,-) mod 2.

The number of vectors z € [GF(2)]*~! such that g(z) = 0 is precisely
Sp—1,r Now, suppose that z,4; = 1. Then the algebraic normal form of
the induced function g : [GF(2)]*~! — GF(2) is

9(z) = | zatz2+... 42, + Z zi+ Z z;z; | mod 2,
1<in, i#r+1 1<i<j<n, i,j#r+1

= | ZTry2+ Try3+...+Zn+ Z ziz; | mod 2,
1<i<j<n, i,j#r+1

since the arithmetic is in GF(2). The number of vectors z € [GF(2)]*~!
such that g(z) = 0 is Sp—1,n—r—1. Thus we have

Sn,r = n—-1,r + Sn—l,n—r—l- (5)
Let us now evaluate Sp—1n—r—1, using the recurrence relation (5):

Sn—l,n—r—l = Sn—2,n—r—-1+Sn—2,(n—1)——(n—r—l)—1

Sn—Z,n—r—l + Sn—2,r—1

Sn—2,,—1+ Spn—2,(n-1)—(r-1)-1
= Sn—l,r—l-

Substituting the above equation back in the recurrence relation (5), we
obtain the following:

Sn,r = n-1,r + S, —1,r—1- (6)

It is interesting to observe that this is the same recurrence relation satisfied
by the binomial coefficients (viz. Pascal’s identity).

We now derive expressions for the boundary conditions Sy o and Sy n.
When r = 0, the algebraic normal form (2) reduces to

flx) = ( E :z:,-a:j) mod 2. )

1<i<j<n

133



The Hamming weight of a vector z is simply the number of positions in
which 1 occurs. Note that equation (7) is symmetric in the n input bits
and hence the value of f(z) depends only on the Hamming weight of z. It
is also trivial to observe that if z has Hamming weight k, then

) = ('2‘) wod 2,

But, (g) =0mod 2 if and only if ¥ = 0,1 mod 4. Thus we have

S0 = x (:) 8)
k = 0,1 mod 4, 0<k<n

When r = n, the algebraic normal form (2) reduces to

f@z)=|zi1+z2+...+zZn+ Z z;zj | mod 2. (9)
1<i<j<n
In this case again, equation (9) is symmetric in the n input bits and hence
the value of f(z) depends only on the Hamming weight of z. If z has
Hamming weight k, then it follows that

fley = <k+ (;)) mod 2.

Simple arithmetic shows that (k + (;)) =0mod2ifand only ifk = 0,3
mod 4. Thus we have

n
Sn,n = Z (k) (10)
k = 0,3 mod 4, 0<k<n

The recurrence relation (6), along with the boundary conditions (8)
and (10), completely describes Sy, , forn > 1and 0 < r < n. We will
now derive an explicit formula for S, ,.

First we will need the following well-known lemma which is actually a
special case of a general theorem proved by C. Ramus as early as 1834 [5,
p. 70, Problem 38].

Lemma 2.3
> (f) = et
k = 0 mod 4, 0<k<n
) (:) = 24P
k = 1 mod 4, 0<k<n
nY _ gn-2_gn? g BT
Z (k) =z 2 2 sin 1
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From Lemma 2.3, the two conditions given by equations (8) and (10)
become the following:

2 =t 4 2500 ™ % ain O

Sp0=2"""+2 (cos 1 + sin 4) (11)
o o1 25 e 2% i 2

Shu=2P7 2 (cos 7 —sin 4) (12)

The next theorem gives an explicit formula for Sy, ..

Theorem 2.4

Sn,r = 2n—1 = 213-_1 sin [(T ~+- 7n2— 1) '12:] N (13)

for alln > 1 and for all0 < r < n.

Proof: When r = 0, equation (13) is the same as equation (11); and when
r = n, equation (13) is the same as equation (12) by basic trigonometric
identities. It is also a routine matter to verify that the formula given in
Theorem 2.4 satisfies the recurrence relation (6). O

We shall now state and prove the main theorem.

Theorem 2.5 There are no functions f : [GF(2)]* — GF(2), n 2 2,
which are balanced, correlation-immune and satisfy the strict avalanche cri-
terion of order n — 2.

Proof: Suppose f : [GF(2)]* — GF(2) is a function which satisfies all
the three abovementioned properties. Then from Lemma 2.2 it follows that
there exists an r, 0 < r < n, which satisfies the following three conditions
simultaneously.

Bl il ol (14)
Sn-—l'r—l = 2n—2 (15)
Snr = ! (16)

il

Actually, in view of the recurrence relation (6), condition (16) is redun-
dant. Thus the function f possesses all the three properties if and only if
conditions (14) and (15) are met simultaneously for some r, 0<r<n.

Let
Tm—8\m
= e § =, 17
a (r+ 3 )2 17)
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Using the explicit formula provided by Theorem 2.4 and the notation (17),
we express the conditions (14) and (15) by the following equations:

-2 _ 9" sina = 22 (18)
2n~2 — 2" sin (a — g) = ogn-2 (19)

Clearly conditions (18) and (19) can be simultaneously satisfied if and only
if
; . ™
sina = sin (a - 5) =0.

However, this is obviously impossible and hence the theorem is proved. O

3 Remarks

Our Theorem 2.5 can also be obtained as a corollary of Lloyd’s Proposition
3.8 [7]. As well, an anonymous referee has pointed out that yet another
approach to proving the result of this paper is to use tools developed in [8,
Chapter 15] on properties of quadratic boolean functions.
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