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Abstract

We consider a pair of MOLS (mutually orthogonal Latin squares) having
holes, corresponding to missing sub-MOLS, which are disjoint and span-
ning. If the two squares are mutual transposes, we say that we have SOLS
(self-orthogonal Latin squares) with holes. It is shown that a pair of SOLS
with n holes of size b > 2 existif andonly if n > 4 and it is also shown
that a pair of SOLS with n holes of size 2 and one hole of size 3 exist for all
n>4,n#13,15.

As an application, we prove a result concerning intersection numbers of
transversal designs with four groups.

1 Introduction

For formal definitions of MOLS (mutually orthogonal Latin squares) with
holes, the reader is referred to [8]. Let HMOLS(hi™ hy™ ...hg™) de-
note a pair of MOLS of order E{Ll n;h; from which n; sub-MOLS of order
h; are “missing” (1 < i < k), and in which these subsquares are disjoint
and spanning. The type T of the HMOLS is definedtobe hi™ ha™ ... hi™.
(Itis also convenient to think of the type as a multiset.) An HMOLS(h™
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ha™ ... he™) in which the two squares are mutual transposes is defined
tobe an HSOLS(h1™ ha™ ... hg™).
The following results conceming HSOLS(h™) have been proved.

Theorem 1.1 1. There exists an HSOLS(1™) if and only if n > 4,
n#6.
2. Forh > 2, there existsan HSOLS(h™) ifand only ifn > 4, except
possibly for HSOLS(7%) and HSOLS(138%).

3. There existsan HSOLS(1¥~"n!) ifv > 3n+1and(v,n) # (6,1)
or(6m+2,2m),where1 < m < 50.

Proof. 1) is shown in [5]; 2) in [15]; and 3) in [18]. 0

For some results on HMOLS, we referto [2,3,8,9,10,12,13,14,15,16,17].

Here, we construct the previously unknown HSOLS(7%) and
HSOLS(13%), and we also study the spectrum of HSOLS(2"3'). We
show that HSOLS(2"31) exist for all n > 4, except possibly for n =
13,15. An application is given in Section 4.

2 Constructions for HSOLS

Our main direct construction is based on difference methods. The follow-
ing is [15, Lemma 2.3].

Lemma 2.1 Let G be an Abelian group, let H be a subgroup of G, and
let X be any set disjoint from G. Suppose there exists a set of 4 —tuples
B C (G U X)* which satisfies the following properties:

1. for eachi, 1< i < 4,and each x € X, there is a unique b € B with
b; = x (b; denotes the ith co-ordinate of b).

2. no b € B has two co-ordinates in X .

3. foreachi,j (1 <i<j<4)andeacha € G\H, there is a unique
bEBWithb;,bj eGandb;—b,—= a.

4. (b1,b2,b3,bs) € Bifandonly if (b2,b1,bs,b3) € B.

Then there exist HSOLS(h9/?*|X|'), where g = |G| and h = |H|.
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Figure 1: HSOLS(2431)
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Example 1 Suppose we take G = Zg, H={0,4}, X = {a,b,c}, and let
B be the following set of twelve 4 —tuples:

0 a 1 2
a 0 2 1
0 b 6 3
b 0 3 6
0 ¢ 5 7
c'0'7T 5
0 1 7 a
1 0 a 7
0 2 3 b
2 0 b 3
0 5 2 ¢
5 0 ¢ 2

These generate the HSOLS(2 431y depicted in Figure 1.

Lemma 2.2 Let G, H, and X be as in Lemma 2.1. Suppose there exists a
set of 4 —tuples B C (G U X) 4 which satisfies the following properties:

I UbeB{{bl,bz,b3,b4} cb=(b1,b2,b3,b4)} = (G\H)UX
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2. no b € B has two co-ordinates in X

3. foreachi,j (1 <i<j<4)andeacha € G\H, there is a unique
b € Bwithby,by € Gandby—by = a,whereeither {i,j} = {i',j'}
or {i,j,v,j'}={1,2,3,4}.

Then there exist HSOLS(h9/?|X|'), where g = |G| and h = |H|.

Proof. Replace each 4 —tuple b = (b1, b2, b3, bs) by four 4 —tuples: bl =
(b1,b2,b3,ba),b% = (b2, b1,b3,ba), b° = (b1,b2,ba,b3), and b* = (b2,

b1, ba, b3). Then, the conditions of Lemma 2.1 are satisfied. 0

Remark. The “orthogonal array with holes” obtained from such a collection
of 4 —tuples is conjugate invariant under the Klein group K4; see [10].

We now present several further applications of Lemmas 2.1 and 2.2 .
In applications of Lemma 2.1, we give only one of each “pair” of 4-tuples.

HSOLS(2°3") (Lemma 2.1)

(0,4,1,3),(0,q,2,1),(0,b,4,8),(0,c,6,9,(0,1,3,0)
(0,2,8,b,(0,3,7,c)

HSOLS(273') (Lemma 2.1)

(0,1,2,4),(0,2,1,6),(0,3,11,12),(0,,5,9),(0,5,8, 11)
(0,¢,10,2),(0,8,13,4),(0,9,12,5),(0,10,6,¢c)

HSOLS(2°3") (Lemma2.1)

(0,1,2,4),(0,2,1,6),(0,3,5,11),(0,4,7,14),(0,5,15,16)

(0,a,12,15),(0,b,13,5),(0,c,16,12),(0,6, 14, a)
(0,10,17,b),(0,11,6,¢c)

HSOLS(2'131) (Lemma 2.1)

(0,1,2,4),(0,2,1,6),(0,3,5,9,(0,4,7,16),(0,5,13,19)
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(0,6,21,14),(0,8,15,5),(0,0,16,13),(0,b,18,17),(0,¢,20,12)
(0,7,17,4),(0,12,10,5),(0,13,9,0)

HSOLS(21311') (Lemma 2.1) This gives an HSOLS(2 1731y by filling
in the hole of size 11 with HSOLS(2*3").

(0,1,3,0),(0,2,5,19),(0,3,9,b),(0,4,14,6),(0,5,25,d)

(0,6,20,e),(0,7,23,f),(0,8,7,g),(0,9,10,h),(0,10,22,1')
(0,11,18,]’),(0,12,16,k),(0,a,21,22),(0,b, 17,15),(0,¢,8,5)
(0,d,4,8),(0,e,24,19),(0, 1, 15,9),(0,g,11,18),(0,h,6,23)
(0,i,1,11),(0,7,2,17),(0,k, 12,24)

HSOLS(21413") (Lemma 2.1). This gives an HSOLS(2193") by fill-

ing in the hole of size 13 with HSOLS(2°3").
(0,1,3,a),(0,2,8,b),(0,3,15,c),(0,4,7,d),(0,5,6,e)

(0,6,13,f),(0,7,17,g),(0,8,l6,h),(0,9,27,i),(0,10,19,]')
(0,11,22,k),(0,12,25,1),(0,13,12,m),(0,a,24,25)
(0,b,21,23),(0,c,18,15),(0,d,23,19),(0,e,10,5)
(0,f,11,l7),(0,g,1,22),(0,h,4,24),(0,z',2,21)
(0,]',26,16),(0,k,9,26),(0,l,20,4),(0,m,5,20)

HSOLS(2'7151). This gives an HSOLS(2231") by filling in the hole
of size 15 with HSOLS(2631).

(0,1 8,a),(0,2,4,b),(0,3,6,c),(0,4,9,d),(0,5,ll,e)

(0,6,18,f),(0,7,25,g),(0,8,30,h),(0,9,29,i),(0,10,31,]’)
(0,11,26,k),(0,12,20,L),(0,13,24,m),(0,14,15,n)
(0,15,28,p),(0,16,32,22),(0,a,23,24),(0,b, 12,14)

(0,c,33,30),(0,d,27,23),(0,e,2,31),(0,f,19,25),(0,9,16,9)
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(0,h,7,33),(0,3,1,10),(0,,3,27,(0, £,21,32),(0,[,13,26)
(0,m,5,19),(0,n,14,29),(0, p, 10, 28)
HSOLS(2%3!) (Lemma 2.2)
(0,1,2,4,(0,q,1,5),(0,b,4,9),(0,¢,5,2)

HSOLS(2831) (Lemma 2.2)

(0,1,2,4),(0,3,1,7,(0,q,5,10),(0,b,6,13),(0,¢,7, 11)

HSOLS(21°31) (Lemma 2.2)
(0,1,2,4),(0,3,1,8),(0,4,7,15),(0,q,4,13)
(0,b,6,11),(0,c,8,14)

HSOLS(2'231) (Lemma2.2)
(0,1,2,4),(0,3,1,7,(0,4,15,10),(0,7,10,18),(0,qa,5,15)
(0,b,7,16),(0,c,8,19)

HSOLS(2'43!) (Lemma2.2)
0,1,2,4,(0,3,1,7,(0,4,9,16),(0,5,20,11),(0, 11,5, 18)
(0,q,10,20),(0,b,11,19),(0,¢, 13,25)

HSOLS(2'*11!) (Lemma 2.2) This gives rise to an HSOLS(2'831)
by filling in the hole of size 11 with HSOLS(2431).

(0,1,3,5),(0,q,1,4),(0,b,2,6),(0,¢,5,10),(0,d,6,12)

(0,e,7,15),(0, f,8,17),(0,9,9,19),(0, 4,10,21),(0,3, 11,27)
(0,5,12,25),(0,k,13,20)

Hence, we have
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Lemma 2.3 There exists an HSOLS(2"3") for
neE {4,5,6,7,8,9,10,11,12,14,16,17,1,8,19,23}.

Lemma 2.4 There exists an H SOLS(76).

Proof. Apply Lemma 2.1 with the following 4 —tuples:
(0,1,29,31),(0,2,28,14),(0,3,26,9),(0,4,6,18),(0,6,2,13)
(0,7,34,1),(0,8,17,33),(0,9,27,9),(0,11,a,3),(0,12,b,21)
(0,13,c,4),(0,14,d,24),(0,16,e,23),(0,17,f, 19),(0,a,16,24)

(0,b, 12,11),(0,c,8,21),(0,d,7,13),(0,e,22,29)
(0,f,32,34),(0,9,11,7)
g

Our recursive construction for HSOLS uses group-divisible designs. A
group-divisible design (or GDD) is a triple (X, G, A), which satisfies the
following properties:

1. G is a partition of X into subsets called groups

2. A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point

3. every pair of points from distinct groups occurs in a unique block.

A transversal design T D(k,n) is a GDD with kn points, k groups of
size m, and 12 blocks of size k. (A T D(k, n) is equivalent to k —2 MOLS

of order n.)
The following construction is essentially [8, Lemma 2.2].

Lemma 2.5 Suppose (X,G,A) isa GDD and let w : X ->Z*U{0}.
Suppose there exist HSOLS of type w(A) for every A € A. Then there
exists HSOLS of type {¥zec w(z) : G € G}

We shall use the following specialization.
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Corollary 2.6 Suppose (X,G,.A) is a GDD where every block has size
at least four. Suppose also that there is an HSOLS(21G131) for every
G € G. Then there is an HSOLS(2X131),

Proof. Let co be a new point (not in X). Define anew GDD (X',G', A",
where X' = X U{o0},G' = {{y}:y€ X'},and A' = AU{G U {0} :
G € G} (i.e. we add the new point oo to each group in G, and form a new
GDD with groups of size one). Define the following weighting w of X':

wy)=2 ifye X
w(y)=3 ify=oo.

Now, apply Lemma 2.5. For each A € A, we require HSOLS(24l),
which exist by Theorem 1.1. For each A = G U {00} (G € G), we require
HSOLS(21G131),  which exists by assumption. We obtain
HSOLS(2X131), as desired. 0

Theorem 2.7 For h > 2, there exists an HSOLS(h™) if and only if n >
4.

Proof. We need only give an HSOLS(13%). Take a TD(6,7) having
two disjoint blocks A and B. Delete all points in B. Give weight 3 to each
pointin A and weight 2 to all other points. Since the GDD has block sizes 5
and 6, we need input HSOLS of types 3¢,26,23,243! and 253!, which
are all known. This gives an HSOLS(13%). 0

3 - H8OLSE2731)

We begin by noting a trivial necessary condition for the existence of
HMOLS.

Lemma 3.1 If there exists HMOLS(a™b'), thenn> 1+ 2b/a.
Proof. Trivial. ad

Corollary 3.2 If there exists an HSOLS(2"3'), thenn > 4.
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In order to close the spectrum of SOLS(2"3 1, we use the GDD con-
struction (Corollary 2.6). We shall use the following classes of GDDs.

Lemma 3.3 [I, Lemma 2.5] Suppose there is a TD(6,m) and4 <7<
m. Then there is a GDD of group-type 4™~"5" in which every block has
size at least 4 .

Lemma 3.4 [I, Lemma 2.6] Suppose there is a TD(5+r,m)andr > 1.
Then there is a GDD of group-type 4™~ 75" in which every block has size
at least 4.

Lemma 3.5 For n> 48, there exists an HSOLS(2"3Y).

Proof. Write n = 6m + r, where m is odd and 4 < r < m (this can be
done in a unique way). There is a TD(6,m) by [4]. Apply Lemma 3.3,
obtaining a GDD of group-type 4™~"5" in which every block has size at
least 4. Then, apply Corollary 2.6. 0

Lemma 3.6 Thereisan HSOLS(2"3 1y for32 <n<45.

Proof. Apply Lemma 3.3 withm=7,4 <r < 7;withm=8,4 <r<
7:and withm = 9,4 < r < 9. Then, apply Corollary 2.6.

O

Lemma 3.7 There is an HSOLS(2"3 1y for n= 46 and 47.

Proof. Apply Lemma 3.4 withm = 11, r = 2 and 3. Then, apply Corol-
lary 2.6. 0

We present constructions for several other GDDs in Table 1. In each
case, we obtain HSOLS(2"3!) from Corollary 2.6.

Lemma 3.8 There is an HSOLS(2"31) for n= 21,22, and 31.

Proof. Take a TD(6,5) and let A be a block. Keep the points in A and
delete all other points in the last two groups. Give weight 3 to the point
which is the intersection of A and the last group. Give weight 2 to other
points. We obtain an HSOLS(2%13").

Ina T D(8,7), keep the points in one block A and delete other points
in the last four groups. A similar weighting gives an H SOLS(23131).

Ina(21,5,1)—BIBD give weight 3 to five points in a block and weight
2 to all other points. We get an HSOLS(2 16151y, and then an
HSOLS(22231) by filling in the size 15 hole with an HSOLS(2°3%).
’ g
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Table 1: Constructions of HSOLS(2"31)

group-type

n of GDD  construction

16 44 TD(4,4)

20 45 TD(5,4)

24 5441 TD(5,5) minus a point

25 52 TD(5,5)

26 4452 TD(6,5) minus one point each from the first four
‘ groups such that no three are in the same block

27 4353 TD(6,5) minus one point each from the first three

groups such that they are not in the same block

28 5442 T D(6,5) minus one point from each of two groups

29 5531 TD(6,5) minus a point

30 5% TD(6,5)

We then obtain the following existence theorem.

Theorem 3.9 An HSOLS(2"3") exists ifand only if n > 4, except pos-
sibly for n= 13 or 15.

4 An application

HSOLS(2™) played an essential role in a construction for 2 —perfect
m—cycle systems [11]. In this section, we give an alternate proof of a
known result on intersections of transversal designs usmg the HSOLS(2"
31) that we have constructed.

Suppose (X,G, A1) and (X,G,.A2) are both T D(4,m) (having the
same group set). The intersection of the two TD’s is defined to be the
number of common blocks, i.e. |A; N.Az|. Define T'I(m) to be the set of
all possible intersection numbers of two T"D(4 , m) ’s. An almost complete
determination of the sets T"I(m) is proved by Colbourn and Royle in [7].
This is accomplished using incomplete transversal designs. Following the
remark made in [7, p. 46], we prove a similar result (for even m) using
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HSOLS(2"3!). (Actually, it suffices to use HMOLS(2"3!) in this

construction.)
The following result can be proved in a similar manner as the construc-

tions in [7]. We state it without proof.

Theorem 4.1 Suppose there is an HMOLS(2"3"). Let0 < a < m, let
Be{0,1,3},lets; € {0,2,8}(1 < i< n)andlete €{0,1,3,7,15}.
Then L

a(4n+2) + B2n) + Y &+ e+ 1 €TI(2n+4).

1=1

Now, simple arithmetic yields the following corollary:

Corollary 4.2 Suppose m > 12 iseven,1 <t < m?,andt # m* — s

where
s E {1,2,3,4,5,7,9,10,11,13,17,19}.

Thent € TI(m).

Remarks.
1. Itis easy to see that 0 € T'I(m) forany m > 3,m#6.

2. From the proof of [6, Lemma 2.1], it follows that m? — s ¢ TI(m)
ifse{1,2,3,4,5,7}.

3. In [7, Lemma 3.6), it is proved thatif m = 9 orm 2> 12, m # 14,
0 <t< m?, andt ¥ m? — s, where

s¢{1,2,3,4,5,7, 10,11,13,19},
thent € TI(m). Sothecasem = 14 isthe only “new” case covered
by Theorem 4.1.
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