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Abstract We show rhat for aI odd m, there exists a direcred m+ycle systam of D,that has an [m/2J -nesting, except possibly when n € {3 m + l, 6 m + I }.

1. Introduction.

Let Ko h ftg complete graph on n vertices. An m_cycle of a graph G is anorderedm-tuple (uo,utr...rum_t) suchthatu;u;a1 foiO g i <;_ l isan
edge of G (where subscrips are reduced modulo *). en *-ryrtr ,yrtem of Kois an ordered pair ( V,C) where y is the vertex set of ff,. (so'n = lVl)and C is
a collection of edge-disjoint rn_cycles of Ko which induce a partition of E(Kr)(E{K") is the edge set of If").

Let (us, ul, . . ., un_t ; rl) denote the star which joins ur to each of the verticesuorut um_r. A nesting of the m+ycle system (V,C) of Kois a functiona: C --+ y such that C(a) induces a partition of E(K^), where COI is the setof stars defined by

C(a) = {(uoul r. .. tum_t; o(c)) t c = (us, ul, .. . ,um_r) e C1 .

Whether or not an arbitrary m_cyclesystem can be nested is an exEemely difficult
y {.rtl.*.^ However, it would seem ftrcrable to consider the problem of nnairg

the set of values of n for which there exists a nestable _-.y.t. system of Ko.A simple counting argument shows that a necessary condition for a nestable m_r, cycle system of Kn to exist is that z = I (mod 2m).In the case where m = 3,this problem has been completely sertled (this is precisety the nesting problem forSteiner triple systems) [2, g], the set of possible values being all n : I (mod 6).More recently it has been shown that t5] for any odd value of m, with at most 13possible exceptiorsthe necessary condition is alio sufficient, anUfortheparticutar
case when m = 5 there are no exceptions. This nesdng problem for even length
cycles is essentially solved, since foiany even m ) 4, with at most t3 exceptiins
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for each value of m, ttrere exists an m-cycle system of K,,, n : | ( mod 2 m)
which has a nesting [7197.

In this paper, we introduce analogous problems for directed m-cycle systems.
I*t D" be the complete directed graph on n vertices. A directed m-cycle of a
directed $aph G is an ordered m-tuple (uo, ur r. .. r um_l) such that (u;, u;+r) is
an arc of G for 0 < i I m - I (reducing sub-scripts modulo m). A directed
m-cycle system of Do is an ordered pair (V,C) where y is the vertex set of Do
(so n = llzl) and C is a set of arc-disjoint direcred m-cycles of Do which induce
a partition of ,,4(D") (A(D") is the set of arcs of D,,). There are clearly several
ways to define a nesting of a directed m+ycle systcm as the edges in each of the
stars can be oriented in different ways. Perhaps the most satisfying problem would
require that for some fixed r, 0 ( s I m, each directed star used in the nesting
has exactly s arcs directed in and m - r arcs directed out of the centre vertex.
Therefore, define (uo, rt r... tur-ti !t,,uz1t r... r um_l; ur) !o be the directed
(r,m)-star inwhich (u;,w) isanarcfor0 ( i ( s- I and (os,r;) isanarcfor
r ( i 1 m - 1. Then define an n-nesttng of a directed m+ycle system (V,C) of
Dn ta be an ordered pair (a,,9(a)) where a is a function a: C + v and S(a)
is a set of directed (n,m) -stars defined by

S(e) = { (rr.tol tu4(t)t... tu,.,(,-l;i ur.(z) ,... ,t)rc(m-ry; a(c)) |

c = (u0,. .. tum-r) e C1

forsomepermutations n" of {0,1, ... ,m- 1}, c€C,suchthatS(a) inducesa
partition of A(D").
Examplel.l: Letm=5 andn =6.Then

C = {(5,0, 1,3,2),(5, 1,2,4,3), (5,2,3,0,4),(5, 3,4, 1,0),
(5 ,4 ,A ,2 ,l) , (0 , 3, l, 4 ,2)\

is a directed 5-cycle system that has a l-nesting defined by

S(a) = {(l;5,3,0,2;4),(3; I ,5,2,4;0),(4;2,0,3,5; l),
(5; 3, 1,4 ,0; 2), (0; 4 ,Z ,5, 1; 3) ,(2;0 ,4 ,1,3; 5)) i . n,

and a 2-nesting defined by

,S(a) = {(5, 3; 0, 2,1; 4),( l, 5; 2,4,3;O),(2,0; 3, 5,4; l),
(3 , I; 4 ,O ,S;Z) ,(4 ,2:5, 1,0; 3), (0 ,4i l,l ,Z;5)l .

A simple counting argument shows that a necessary condition for the existence
of a directed m-cycle system of Do that has an r-nesting is that r : I (mod m).
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It is the object of this paper ro show that if m is odd then this is also a sufficient
condition, with at most 2 possible exceptions, in the case when a = lm/2).

It is worth noting that if every arc in an s-nesting of a dfuected m-cycle iystem
is oriented in the opposite direction then a (m - r) -nesting results, so it suffices
to consider tfiis problem for I ( s < L*/Z).

Finally, notice ttrat if we ignore ttre directed cycles then what remains is a de-
composition of Do into directed(t,m)-stars. It is only recently tU thattheprob-
lem of findirig such decompositions has been found when n: 0 or I (mod m)
for all r, fhe case when n : 0 (mod m) now being possible since the condi-
tion of the directed stars arising from a nesting is no longer imposed. Even more
recently, this decomposition problem has been completely solved [3].

Throughout therestof this paper, weassumethat m is odd. I*tZm = {0, I , . .. ,
m - r\.
2. Directed m-cycle systems with lm/Z] -nestings.

Lemma 2.1. For I ( r ( L""/2) therc exists a directedm-cycle system of
D^+t that has an r-nesting.

Proof: Define a directed m-cycle on the vertex set {oo} U Z^by

o = (oo retr... ,om-1) where

oo = oo,

oi -- (-r)i U /zJ for t < j S L*/zJ, otrd

om_i =(-l)L*tzllm/zl + (-r)iUlz) for t < j <W/z).
Leto+ d = (ao + r,o1 + d,... , om_r * r),reducingeachcomponentmodulo

m and defining oo + r = oo. Then we can define a directed m-cycle system
({*} t) Z^,C) as follows: if m: I (mod 4) then define

c= {o+i l0 < r< m-t}u{(o,7m1z1,2lm/21 (m_t)lm/21}
and if m: 3 (mod 4) then define

g = {o+i I 0 < i<-m-l} u { (o,ym1z1,2lm/2) (m_r)Lmlzil} .

Tb nest these dkected m-cycle systems, begin by renaming oo with m, so the
, vertex set is now Zm+l. Of course in this case, for each c E C, a(c) is the unique

vefiex that is not in c. Define

"=(1,-1,. ..,L"lZ),-L"/Z),(m* t) /Z; t+p/Zl,{l + Lr/20,...,
L*/zJ,-lm/z); o)

if r is odd, and
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s= (1,-1, . . ., n /2,< / Zi | + r / Z,-t - r f2, . . ., L* / Z ),-L* I Z J, {m+ t) / z; O)

if r is even.

Define s + i to be formed by adding i (modulo m + l) to each component of s.
Then,S(a) - {"*, l0 < i < *} isans-nesringof thedirected m_cyclesystem
(Z^*t,G) of D*+t I

The directed 5-cycle system together with the 1-nesting and 2-nesting in Ex_
ample 1.1 illustrate the construction in the proof of Lemma 2.1 (with oo being
replacedbym = 5 throughout).

Lemma 2.2. Fort I s < L*/Z) therc exists a directedm*ycle system of
Dz^+r that has an r-nesting.

Proofi Letm-2y + l andsoasu !Lm/Z),n<y.Define

c1 = (-1,2,...,(-t)vy,(-l)v(y+ t), (-1)r*1 e+2),..., (_t)2 vey+t))

where each coordinate is reduced modulo Zm + I and define cz = _cr (where
-c1 iS formed by multiplying each component of c1 by - I modulo m). Also
define

Ft,2,...(-1),r; (-l)'*,(r* t),..., (-l)vy, (-t)y(y+ l),...,
eDzYQy+ l); o) if t { !
(-t ,2, . . . (-1) "r; (-1) "( r+ l) (-Dzv Qg+ l) ; 0 )

tfr=!

and s2 - -al.
Then C = {q + i, c2 + r' | 0 < t < 2m} isa directed m-cyclesystem and

,9(o) = {"r + i,s2+ r | 0 < i < 2m} is an s-nesting of the directed m_cycle
system (Zz^+r, C) of Dzm+r. I

For example, Lemma Z.Zproduces the directed 5 -cycle system (Zn,C) where

C= {(10+ i,2+i,3+ i,7+i,5+ i) l0 < d< l0} ,,*.\

that has a l-nesting defined by

.9(a) = {(10 + i;Z+ r',3 + i,7+ i,5+ i; r) l0 <, < l0}

and has a 2-nesting defined by

8(a) = {(10+i,2+ i;3 +i,7 +f,5+r; r) l0 < d< l0}

sl=
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Deflne an m-nesting sequence d= (h,dt,... ,dy*1zfl by d;= (_l)i+1 L(r+1) /?) (mod m). This sequence has rrpo relevarit irbpe.ties. Ler D(i,7) =min{i - j (mod m) , j -i (mod *)}. Thenrhis m-nestingsrqu"ncedsarisnes

{D(di,d;-) | I < i < lm/21} = {1,2,...,L*/2
{n (dy^p1,4.) l0 < i < L*lz) } = {l ,2,... ,W/z

It will be ionvenient to denote the directed m-cycle

fu,h) . . (z,h)

andl),
l).

(1)

Q)

(g,dt) a (z,dr)

(y,dz) a a (z,dz)

(y,dy-1zy) . . (z,d1*1zy)
o (r,dy*1zl

by_(g, z,ri h, dt,. .., dy^121).
Finally, we need a pair of orthogonal idempotent quasigroups. These exist for

all orders except 2,3,and6.

Theorem 23. Forattn: | (mod m) exceptpossiblyne {3m+ 1,6 m+l},
there exists a directed m+ycle system of Do that has a lm/2-l-nesting.
Proof: l*tn= rns+ 1 where s # {2,3,6}.Let(2",o1) and (Z",oz) beapair
of orttrogonal idempotent quasigroups of order s.

Define a directed m-cycle system ({-} U (2" x Z^) ,C) otD,. as follows.
(1) For each r e Z" define a copy of an L*/Z)-nesrable directed m+ycle

system of D-*1 on the set of vertices {*} U ( {r} x Z^) (seelemma 2.1)
and place these directed m-cycles into C.

(2) fori e Z*,! € Z"and.z € 2,,! t' z,placettredirectedm-cycle
(y,r,y ot z; do + i,d,1+ i... ,d,ym/z)*;i into C (reducing all the com-
ponents d1 + i modulo rn).

By using property 1 of an m-nesting sequence, it is straightforward to check
ttrat ({oo} U (2, x Z^), C) is a directed m-cycle sysrem. Ir remains to show
that it has an L*/Z)-nesring.
(l) For each r e. Z" ler (a,, &(a,)) be an L*/z)-nesring of the directed m_

cycle sysrem placed on {oo} u ({r} * Z^).

a

!.
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(2) Fori € Z^,! € 2", z € Z",g t zdefine

o((v,2,!or z; d4 * f,.. . ,dyn/z)+ i)) = (yoz z,dyn1s1+ i)

and deflne the corresponding directed (s,m)-star by

s(y,z,i) = ((y,do + r),(y,dt + i),. ..,(y,dy^121_r+ i),(y o1 z,dymlzl + i);
(z,h + 0,...,(z,dy^121_r + r); (y o2 z,dymp1 + 0).

Then the set consisting of the directed stars in the sets ,gr, r € Z" together with
s(y,,,, fory I z,y € Z",z e Z",i e Z^formanlm/z)-nesting. fo-seethiswe
should find the directed stars containing the arcs ( (a, j) , (b, j)), ( ( o, j) , (a, k))
and (( a, j), (0, e)) for a f b and j f k.

Since (Zr,or) and (Zz,oz) are orthogonal, for some y and z, g ot z = o and
Uozz = 6. Also,thereisandsuchthatdy^p1+i= j. Then((o,l),$,j)) isin
the directed star s1y,z,i).

Clearly, ((a, j), (a, k)) is in one of the directed srars in &(a.).
Finally, by property 2 of rn-nesting sequences, ttrere exist values d, wrdi such

thateitlrer d. + i = j and dL^/r) +i = k or d, + i = k and d.y^1z1aj = 7 (but
notboth). In thefirstcase, letoo2 z = b,then ( (a, j), (6, &)) i3 in s1",,,1. In the
second case, let z o2 b = o, then ((a , j), ( D, &) ) is in s(,,r,, .

The theorem now follows using Lemma Z.l andLemmaL.Z. t
Finally, we remark that several problems remain open.

(1) Findadirecred m-cyclesysremthathas anu-nesringfor I 1 z 1L*lZ)_
1, and for r = L*lZ I when m is even.

(2) Find a directed rn-cycle sysrem of Do that has n lml2l-nesting when
n € {3m+ l,6m+ 1}.
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