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ABSTRACT

An exact (1,3)-cover of order v is a family C of proper
subsets of v-set V, each of which has cardinality at least 3,
with the property that every unordered triple of distinct ele-
ments of V is contained in precisely one member of C. The
number g(1,3;v) is defined by g(1,3;v) = min{|C|: C is a
(1,3)-cover of order v}. The value of g(1,3;v) is known for
infinitely values of v, and has been determined for
4< v =<2 with the exception of v € {11,13,19,23,24}.
Here we show that g(1,3;19) = 77, 125 < ¢(1,3;23) = 130
and ¢(1,3;24) = 130.

1. Introductlon.

Let V be a v-set of elements (called points), and let C be a collection of
proper subsets of V (called blocks). The collection C is said to be a (1,3)
cover of order v if every triple of distinct points occurs in a unique block of C
and every block contains at least three points. The number g(1,3;v) is de-
fined to be the least number of blocks which can occur in a (1,3)-cover of ord-
er v, that is,

9(1,3;v) = min{| C|: C is a minimum cover of order v}

A (1,3)-cover of order v which contains g(1,3;v) blocks is said to be minimal.
R.G. Stanton and J.G. Kalbfleisch [8] determined the value of g(1,3;v) for
4 S v < 10, and showed that g(1,3;v) = 0(v¥?). The values of g(1,3;v) have
been determined for an infinite number of values of v by Hartman, Mullin
and Stinson [3]. In addition, g(1,3;v) has been determined for all v satisfying
12 < v =< 26, with the exception of v € {13,19,23,24} (see table 1). It is our
purpose here to show that ¢(1,3;19) = 77, ¢(1,3;23) 2 125, and
9(1,3;24) = 130.

2. Preliminary results.

A finite linear space G is a pair (P,L) where P is a finite set of objects,
called points, and L is a family of subsets of P called lines, which satisfies
the following.

(i) Every pair of distinct points lies in (on) a unique line,
(i) Every line contains at least two points, and no line contains all points.

A near-pencsl is a finite linear space in which some line contains all but
one of the points. The following is proved in [2].

Lemma 2.1. Let F be a finite linear space on v 2 5 points which is not a
near-pencil. If b denotes the number of lines of F, then b 2 B(v), where

nZ+n+1ifn?+2<v <n?4+n+1
B(v) = {n’+n itn’=n+3 S v < n?+1
nZ4n—=1ifn2=n+2 =y

An eztended near-pencil of order v is a (1,3)-cover of a v-set v in which
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some block contains all but one point of V. Such a cover contains 1+(U;1)
blocks.

Let C' be a (1,3)-cover of order v, and let z be a point of C. Then the
set of blocks

¢, ={BMz}: z € B, B € C}

is called the derived design of C (with respect to z). Clearly either C, con-
tains just one block (in which case C is an extended near-pencil), or C, is a
finite linear space on v—1 points. It is easily shown that if C, is a near-

pencil on v—1 points, then C contains at least l+(v;1) blocks.

The following lemma on binomial coefficients is observed in 13].
Lemma 2.2. Suppose that ky.kg,...ky are non-negative integers, and

[}

=]

t
equality if and only if precisely r of the k;’s are equal to q+1, and the
]

> ki g+1 Q.
where 0 S r <b and g =1. Then ()=t )+ (b—r)(t), with
=]

remaining k; 's are equal to q (hence Y k; = gb + r)

i=]
Lemma 2.3. Let ¢ be any integer satisfying the inequality
g(13v)=sc s (v;l). Then the inequality
v(v=1)v=2) = glg=1)3v-B(v—1)=2¢(g+1)],

where g = |v-B(v=1)c] and B(") is as in Lemma 2.1, must hold.

Proof. Suppose that there is a 3-cover of C of a set V, where
|Cl = ¢ <+ (v=1)(v=2)2. Fori =12,..]|C|, let k; denote the cardi-
nality of the ith block of C; and if |C| <ec, let k; =0 for

[C|l+1=<i=c. Since C, cannot be either a single block or a near-pencil
for any z in V, we have

'k, 2 vB(v=1) = qc + r,
-]

for some r satisfying 0 < r < c. By Lemma 2.2, we have

c k.
v(iv—1)(v—2j = 3'2(3')

Zr(g+1)g(g=1) + (c—=r)a(g—1)(g—2).

Substituting r = vB(v—1) — gc and simplifying, we obtain the desired
result. O

3. Determinatlon of g(1,3;v), v = 19,24,

Lemma 2.3 and modifications thereof can be used in the determination
of certain covering numbers. This is demonstrated below.

Lemma 3.1. The number g(1,3;24) is 130.

Proof. Applying Lemma 2.3 with v = 24 and ¢ = 129 yields a contradic-
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tion; therefore g(1,3;4) = 130. But g(1,3;25) = 130 (see [3]), and the result
follows. O

Lemma 3.2. The number g(1,3;19) is 77.

Proof. It is shown in [9] that g(1,3;18) = 76; hence g(1,3;19) = 76. Now
suppose that C is a (1,3)-cover of 19-set V, which contains 76 blocks. We
first observe that C' can contains most one block of size (cardinality) 3, and
that is some point of V occurs in at least 22 blocks, then C' cannot contains a
block of size 3. Indeed we employ the method of Lemma 2.3, noting that
B(19) = 21. First assume that C conn}‘ins at least two blocks of size 3, and
let ko = ki = 3. Then we find that J'k; = 393 = 5(74) + 24; thus
=]
74
19-18:17 — 2(3-2:1) = 5802 = Y 'k;(k; —1)(k;—2) = 5820;
=1

a contradiction. Similarly if k;4 = 3 and some point has frequency 19, a con-
tradiction is obtained. Now let us assume that C contains a block B of size
3. Then all other points occur in precisely 21 blocks. Thus the derived
designs C,, z € V can all be embedded in =, the projective plane of order 4
(see [2]). Thus, any C, can be obtained from x either by deleting either three
collinear points, or a “triangle“ of 3 non-collinear points. If z is in B, it fol-
lows that B, contains one line of length 2, twelve lines of length 4 and eight
lines of length 5. If z is not in B, then B, contains three lines of length 3,
nine lines of length 4 and nine lines of length 5. Since there are three points
in B and sixteen points not in B, we find that the number of blocks in C is

|c| = 31/3 + 16-3/4 + (3:12+16-9)/5 + (3-8+16-9)/6

which is 77, a contradiction. So C contains no block of size 3. By Lemma
2.4, if C contains a block of size k = 7, then |C| > 76, so C contains no
such block. Thus C has only blocks of size 4, 5 and 6. However, 6-5-4, 5-4-3
and 4-3-2 are all divisible by 12, whereas 19-18-17 is not so

78

il
cannot be satisfied. Thus g(1,3;19) =2 77. But by [5], ¢(1,3;20) = 77, so
g(1,3;19) = 77.0

4. A bound for g(1,3;23).

As shown in the next section, g(1,3;v) has now been determined for all
v < 26 with the exception of v € {11,13,23}. In this section we show that
9(1,3;23) = 125. (As in the preceding section, we have g(1,3;23) =< 130.) A
direct application of Lemma 2.3 yields g(1,3;23) 2 123. This is improved
below.

Lemma 4.1. Any linear space F on 22 points which contains exactly 29
lines contains exactly one line of length 6, twelve lines of length 5 and siz-
teen lines of length 4 (and no other lines). Conversely any finite linear
space on 22 points which has line sizes all of which lie in {4,5,6} contains
precisely 29 lines.

Proof. See [2] and [1]. O

Corollary 4.2. There is no (1,3)-cover C of order 23 all of whose block
sizes lie in {5,6,7}.
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Proof. Such a cover would contain exactly 23/7 blocks of size 7, which is ab-
surd. O

Corollary 4.3. Any (1,3)-cover of order 23 contains at least three points
which lie in more than twenty-nine blocka.

Proof. Any such cover must contain a block of size 3 or 4, and the derived
design of a point in such a block must have at least thirty lines. O

We refer to the number of blocks of a cover C which contain a given
point z as the frequency of z.

Lemma 4.4. Any (1,3)-cover of order 23 contains at least 124 blocks.

Proof. Using arguments similar to those of Lemma 3.2, it is readily shown
that if | C| = 123, then there can be at most two points of frequency
greater than 29 in C, contradicting Lemma 4.3. O

Lemma 4.6. Any (1,3)-cover of order 23 which contains a block of size
k 2 8 contains at least 130 blocks.

Proof. The result follows by applying Lemma 2.4. 0

Note that if b, (v = 3,4,...,7) denotes the number of blocks of size ¢ in a
(1,3)-cover of order 23, then the b; satisfy the following equations.

(i) i‘b.' =|c],
(ii) i“x’b.- = 2923 + ¢,

i) sy, = (%)

i=3
P
where ¢ is the “excess frequency, that is, e = Y'(f;—29), where J; is the
i=1

frequency of the ith point of C.

Lemma 4.8. There is no (1,3)-cover of order 23 which contains ezactly 124
blocks.

Proof. Assume that such a (1,3)-cover C exists. As noted in Corollary 4.3,
C contains at least three points of frequency greater than 29, hence in such a
cover we have e = 3. If we assume that e > 6, then, bearing in mind that C
must contain a block of size 3 or 4, Lemma 2.2 yields a contradiction, namely

R4 L.
that ‘\j(';‘) > (%%), where k; is the size of the ith block of C. Therefore ¢

i=1
must lie in the range 3 < e < 5. Thus there are at least 18 points of fre-
quency 29 in C, and since each lies in a block of size 7, so there must be at
least three such blocks in C. Moreover if ¢ = 3, then we must have by = 1,
b, =0;if e = 4 then b4Sl,andifb4=0,thenb3>l;andife=5=md
by =0, then by > 1. It is readily verified that there is only one such solution
to the above equations, namely (ba,bpbs,bc,b,,e) = (10,75,44,4,3). Should a
cover C exist corresponding to this distribution, it must contain exactly 20
points of frequency 29, and each point of B, the block of size 3 must have
frequency exactly 30 in C. Thus there is a unique point z of frequency 30
which occurs in exactly one block of size 7 in C, since each point of frequency
29 occurs in precisely one such block. Note that z also occurs in B, the block
of size 3 in C. Let ¢; denote the number of lines of length ¢ in C,, the
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derived design of C' with respect to z. Noting that ¢, = ¢g = 1, and ¢3 = 0,
counting pairs and lines in C'; yields the equations

6c, + 10c; = 215,
cy + c; =28

Hence 4c; = 47, which is clearly impossible. Therefore no such C' exists.

Corollary 4.7. The number g(1,3;23) is at least 125.

5.

Conclusions.

The numbers g(1,3;v) have now been determined for 4 =< v =< 26 with

the exceptions of v € {11,13,23}. The values of these numbers are exhibited
in table 1 with appropriate references. The remaining cases appear to be very
difficult. Indeed, it appears that determining g(1,3;11) and g¢(1,3;13) is
beyond the scope of present methods.

Table 1

v g(1,3;v) reference

1 4 (8]
5 7 (8]
6 11 (8]
7 14 (8]
8 14 [8)
9 29 (8]
10 30 (8]
11 =46

12 47 [7]
13 ?

14 63 5]
15 68 [4]
16 68 (5]
17 68 (5]
18 76 [9)
19 77 §3
20 77 6]
21 77 6]
22 17 8]
23 =125 64
24 130 §3
25 130 [5)
26 130 (5]
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