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l. Introduction

I pg:qigr gg11grgrgsl ggg_iru (of order n) ls a rriple (X, G, A),

where lxl = 3n (elemenrs of X are called p--l4E) G = {Ct, G2, G3} ls a

partitlon of X inEo three gregps of slze n, and A is a set of sub-

sets of X (called !:gcLq-) such rhac (1) a block and a group conrain

precisely one common point, (2) no pair of points ls contained in more

than one block. lAl ls the s,lze of rhe partlal rransversal design.

Clearly lAl . n2; tf lrtl =.r2 we say rhar (x, G, A) ls a transversal

design of order n. In a transversal deslgn, every pair of potnts not in
the saue group occurs in a unigue block. I,Ie will abbreviate partial

transversal design to PTD and transversal design to TD.

If T, = (X, GI, Ar) andT, = (X2, GZ, Az) are pTDs, we say rhar

Tt STZ provided Xr=Xr Gl=Gz, and ArS Ar. A pTD T ls sald to

be eonpletable if there ts a TD Tr wlth T._T'. (We say that T

completes to Tr). If T = (X, G, A) and T' = (X, G, A') are pIDs, we

define TnTr = (X, G, AnA'). If TET', deflne Tr -T = (X, G, A,\A)

If A e Ar, deflne T-A = (X, G, A'\{A}). Finally, if TST' and

Ae Ar -A, define T*A = (X, G, A u {A}).

We now define a closure operation: for a pTD

I

't
l

I

L

i

I

T, let

cl (r)

cl(t1 = nTr.
TgT'

is theThus, lf T completes to T , then cl(T) c T, and

smrllest PTD with this property.

I
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We now define critical se!s. A pTD, T, is said to be uniquely
complerable (or: T has (UC;) i5 e1(T) is a TD. T is said ro be

S!-.1erl-ti_Lt_ provided rhar, for atl ,, 
F 

,, cl(T,) ! cf (r) . (That is,

if T = (X, G, A), rhen for all AeA, T-A does nor have (UC)). T is

a crltical qq! if lt is both unlquely compler.able and essential. Thus

a critical seE is a PTD which can be completed to preclsely one TD, and

is minimal wiEh respect to this property.

It is well known that a TD of order n ls equi.valent to a LaEin

square of order n. I,Je wlll use the termlnology lnterchangably, in a

parEicular sltuafion uslng that whlch seems easiesE. We will pictor_
ially represent critlcal sets as being subsets of Latln squares.

However, we find that most proofs and deflnitions are more easily
present.ed 1n terms of TDs.

Crltical sets were flrst lnvestigated by Curran and van Rees [1].

They lntroduced the funct.lons lcs(n) and scs(n), whlch clenote,

respectively, the cardlnallty of the largeat and smallest crltLcal sets

in any TD of order n. Thelr ulaln result is the followlng.

Theoreu 1.1 scs(n) st2l4, and if n is even, there exlsta a

crltical set of slze n214.

The above theorem seems to be qulte good, inasmuch as we are un-

able to improve it, even for a slngle value of n. We ask lf

lim -q-qsll) = r/4 .rls n2

In this paper, we i-nvestlgate large critical sets. For C a

cri-tical- set in a TD of order n, define 6(C) = lCltnZ. (We say that

6(C) is the *dsnqi-!1 of C). Also define 6(n) =ma:<{6(C): C is a

critical ser in a'ID of order n). For smal1 orders at least, it seems
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difficult to find crirical sers of density subsrantially exceeding llZ.

llowever, using recursive Cechni_ques, we show that there exj-st critical

sets of densiry arbirrarily close ro 1. Irr parricular, A(2k) > t-(:/+)L

for all pos;.itivc .integers k. I'hus limsup A(n) = l; wcr conjecture
It-)@

thar lim (n) = t
rPa

Also, using a varieEy of predominantly ad hoc constructions, we

produce a list of k:wer bounds of 1cs(n), for several small values of

2. A Doubllns Const ructiou

In this sectlon, we sha1l descrlbe a doubllng constructlon for

certain critical sets. First, we establlsh some preliminary leuunata

eoncerning critical sets ln general.

Lenma 2.1 Let E= (X, 6, A) and D= (X, G, A' ) be PTDs wlth Eg D.

Suppose that (t) D has (UC) and (2) for all A e A, D-A does nor

have (UC). Then there is a critical set G with EE Cc D.

n

Proof : By induction on lA'l - lAl.

critlcal set by definition, so assume

If lAl = lA'1, rhen D is a

lA'l-lAl >0.

If for all A€ A'\A, D-A does not have (UC), then D is critical.

If not, then there ls a A€ Ar such that D-A has (UC). Delete A

from o.thenlA'l - lAl is decreased by I and inducrion can be apptied.n
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CoroLlary 2.2. If D has (UC), then there is C q D whl-ch is a

critical seE.

Proof. Let E be the pTD whlch has no blocks, and apply

Leuma 2.1. 0

Note Ehat Lenuna 2.1 does not state that every essential set is
contained in a critical seE. In facE we shall later construct a

counterexample.

A sub-TD of a TD T = (X,G,A) fs a TD (Xr,G',A,) where

xl ax, Aa:A, and Ga = {G n Xr: G e G}.

precisely to a subsquare of a Latin square.

suPpose that,

T where U t
essentlal.

A sub-TD corresponds

The following is iumediate.

Leqqa 2..3. Suppose C completes unlquely to a TD T. Then for
any sub-TD U of T, C n U completes unlquely to U.

We also have the following obvious, but very useful crlterion
for showing that at pTD is essential.

Lemna 2.4. Suppose E = (XrGrA) can be completed to T. Also,

for every A e A, there Ls a sub-TD U = (XrrGarAr) of

T, such that E n U ls essentl_al in U. Then E ls

Let nI,...n[ be distinct posltive lntegers. I{e say that a
PTD, E, ls nr_u_:_:.rng-essentlal if lt has sub-TDrs U, as descrlbed

in lemrna 2.4, rrith orders chosen from nlr...,n[. We say that E is
n -criti if it ls both 11,...,nl-essential and has (UC).
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Leuma 2.5. Suppose E = (X,G,A) is an essential pTD, E g T

(T = (X,G,A') is a TD) and U = (Xr,Gl,At) is a sub-TD of T of order

2 disJoint from E. Furrher suppose thar rhe following properry holds:

(*) for each A e Ar, there ls an f(A) e A such rhar f(A) 1s a

block of cl(E + A - f(A)). Then there is no critlcal ser C (of T)

containing E.

Proof. Suppose C is a crltical set of T contalnlng E.

By Lenma 2.3, C Dust conraln a block A of U. Then f(A) ls a

block of cl(E + A - C(A)) c_ cl(C - f (A). But cl(C) = 1. hence

cl(C - f(A)) = 1 and C is not essential. Thus C cannor be crltlcal-.

lx-a1qpIe 2.6. An essenrial set E (of a Latln square L) contained

in no critical seE of L.
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P1"..{. It can be checked that E ls 2,3_essentlal . T

corresponds to the indlcated 2_by_2 subsquare M, and for each cell C

of M, f(C) is the cell of L obtatned by reflecrlon in the maln

dlogonal. Then property 1*1 of lenroa 2.5 is saclsfled, and the result
follows. D

We now define a doubling operation. Thls is most easily described
in terms of Latin squares. Suppose L ls a Latin aquare of order n.
The double of L (denoted by 2xL) wtll be the Latln square

Lz L

Lz

I

where Ll (i = L,2) ls a copy of L wlth every symbol replaced by
x.

1

Now suppose C is a crltical set of L. We define two partial
Latin squares 2 o C and 2 * C, both of which complete to 2 xL.
't'et and let

C
2 (L-c) I cz

C
2

CI

2lcC- 2oC=
cz I

with notatlon as before.

Lemna 2.7 - Let C

Lt

C

there is a critical set

be a crLElcal. set in a Latin square L. Then

A in 2xL,wlth ZoC gAg2rrC.

L I
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Proof. We wlll apply lemma 2.1. Flrst we show that 2 t C

has (UC). Let K be any complerion of Z tr C. 2 x C has rhe subsquare

Lt of order n in the top left-hand corner, so Lt Mzl(= |

ot

where M, N, and 0 are Latln squares of order n. But C g M and

C has (UC1; thus M=L. Strnilarl_y N=0=L,and K=2xL.

Now, we show that, deletlng any cell of 2 o C from Z ,c C yields

a partial Latin square which does not have (UC1. Any cell of Z o C

is elther ln a set Cf whlch ls crltlcal in a subsquare L

,l

1r Of

ln a two-by-two subsquare of the form where X occurs

in a cell of L - C. Lermn 2.1 implies the resulr. I

Under certaLn clrcumstances rre can shov that 2 * C is a criticaL
set.

Theorem 2.8. Let C be 2-critical ln a Latin square L.

2 * C is 2-critical- in 2 x L.

Then

Proof. In view of Lemna 2.7 and Lts proof, it suffices to show

that removing a celI of C, (wlth contents X' say) from the top left_

hand corner of 2 x L, yields a partlal Latln square that does not have

(UC). In L, there is a two-by-two subsquare, of the form

whlch i-ntersects C in the glven cell X. Then, 1n 2 x L

Xt xz

xz Xt

x v

v x

u1
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*r is a similar such subsquare. I

lcsr(n) to be rhe largest 2-critical set in a Latin square

Also ler ar(n) = lcsr(n)/n2.

The following is eas1ly provecl by lnductlon.

gsqg[ar1_u

*r v2

v2

Define

of order n.

Lemma 2-11

LzQLn) - r-f*ls
For all integers 9. > 0, and all positlve lnteBers n,

(r-^z(n)).

Curran and van Rees [I] have shown

Corol 2.L2 If n 
=

0 modulo 2

Corollary 2.13 limsup A (n) =1.n->@'

3. -tlyrul-eg

In thi.s section we construct critical seEs in some Latin squares

of 1ow orders, and give a list of lower bounds for lcs(n).

Lemna 3.1

For all posirlve inregers K, Lr(ZK) > \,.

9"

See [1.]. D

then a, (n) > r- tfl s 
.

lcs(2) = lcsr(2) = 1; and tcsr(3) = 0, 1cs(3) = 3.

Proof.

lerre--l=-?

Proof

Lemma 3.3

lcsr(4) > 7, lcsr(B) , 37, and lcs(16) > fZS.

Corollary 2.L2. l

lcs(5) > 10.
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Proof: It can be verlfied that C 1s crltieal ln L. (see the

flgure followlng). 0

3 4l

3 4 5

c

Lemna 3.4 lcsr(5) > 15; 1cs(6) > 18.

Proqf_: Conslder C LI' Crt and L,
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Note that Lt ls syrmetric,with constant rnain diagonal (i.e. unipotent).

No palr of ceIls of L' symmetric wlth respect to the dlagonal, are

6oth in Cl. ?hus Ct is 2-essential. It ls also easy to check that

Ct has (UC); rhus Ct 1s 2-crlrlcal_ in Lt.
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It can also be verified that CZ is 2,3_crirical in Lr. D

Lemma 3.5 lcsr(7) > 19; 1cs(7) > 24.

Proof. Ct is 2-crit1cal in L' and C, ls crirical ln LZ
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Z
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Corollary 2.9. I

We conclude wlth a llst of 1ower bounds.

7

I
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I

!.,"ryjr_q lcsr(l2) > gt, lcsr(l4) > 106, tcs, (ZO1 > 23r,
lcsr(24) > 387, and lcsr(28) > 514.

Proof:
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Table 1

n

lower bounds for lcs(n) and lcsr(n), n S l0

lcs (n) lca, (n)

1
2
7

10
IB
24
37
39
55

2
3
4
5
6
7

B

9
10

1
0
7

0
15
19
37

0
4s
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