Determination of a Covering Number

D. R. Stinson
Department of Computer Science University of Manitoba

Abstract

The exact covering number $g(1,3 ; 18)=76$.

Let t be a positive integer. An exact t-covering of a finite set X is a family B of proper subsets of X (called blocks) which satisfies:
(1) every t-subset of X occurs in exactly one block in B
(2) every block has size at least t.

The covering number $g(1, t ; v)$ is defined to be the minimum cardinality of B, an exact t-covering of a v-set X. (Such a covering is called a minimum covering). The numbers $g(1,3 ; v)$ have been investigated in several papers. It is known [2] that $g\left(1,3 ; q^{2}+1\right)=$ $q^{3}+q$ for all prime powers $q \geq 3$. Also, $g(1,3 ; v)$ is known for $4 \leq v \leq 26, v \neq 11,13,15,18$, or 23 (see [2][3]).In this paper we show that $g(1,3 ; 18)=76$.

Lemma 1
$g(1,3 ; 18) \leq 76$.

Proof: Let B denote the blocks of a Steiner system $\mathrm{S}(3,6,22)$. Pick any block B, and delete all occurrences of four points $x_{1}, x_{2}, x_{3}, x_{4} \in B$ in B, and also delete B. The $S(3,6,22)$ has 77 blocks; we obtain an exact 3-covering, of the eighteen points, having 76 blocks.

The following is established in [4].

Lemma 2 If an exact t-covering B of a v-set has a block of size k, then $|B| \geq 1+\frac{k-1}{v-2}\binom{k}{2}(v-k)$.

Corollary 3 If $g(1,3 ; v) \leq 75$, then no block in a minimum covering has size exceeding 6 .

Proof: The function $f(k)=\frac{k-1}{16}\binom{k}{2}(18-k)$, for $7 \leq k \leq 17$, has a minimum value of 87.625 , attained at $k=7$.

Now, let us suppose there exists a perfect 3-cover B of 18 points with $\mathrm{b} \leq 75$ blocks. By Corollary 3, all blocks have length $3,4,5$, or 6 . Let the blocks of B be denoted L_{1}, \ldots, L_{b}, and let the points be denoted x_{1}, \ldots, x_{18}. For $1 \leq i \leq b$, let k_{i} denote the length of L_{i}; for $1 \leq i \leq 18$, let r_{i} denote the degree of x_{i} (the number of blocks in which x_{i} occurs).

$$
\text { We have } \quad \sum_{i=1}^{b} k_{i}={ }_{i=1}^{\sum_{1}^{1}} r_{i}=N \text {, say. For } 3 \leq i \leq 6 \text {, suppose }
$$

there are b_{i} blocks of length i. Then we have
(0)

$$
3 \mathrm{~b}_{3}+4 \mathrm{~b}_{4}+5 \mathrm{~b}_{5}+6 \mathrm{~b}_{6}=\mathrm{N} .
$$

Counting triples, we have
$6 b_{3}+24 b_{4}+60 b_{5}+120 b_{6}=4896$,
or
(1) $\mathrm{b}_{3}+4 \mathrm{~b}_{4}+10 \mathrm{~b}_{5}+20 \mathrm{~b}_{6}=816$.

Of course,
(2) $\mathrm{b}_{3}+\mathrm{b}_{4}+\mathrm{b}_{5}+\mathrm{b}_{6}=\mathrm{b}$.

We may solve (1) and (2) for b_{6} in terms of b_{3} and b_{4}, obtaining

$$
\mathrm{b}_{6}=\frac{816-10 \mathrm{~b}+9 \mathrm{~b}_{3}+6 \mathrm{~b}_{4}}{10} .
$$

Then, from (0),

$$
\begin{aligned}
\mathrm{N} & =3 \mathrm{~b}_{3}+4 \mathrm{~b}_{4}+5\left(\mathrm{~b}-\mathrm{b}_{3}-\mathrm{b}_{4}\right)+\frac{816-10 \mathrm{~b}+9 \mathrm{~b}_{3}+6 \mathrm{~b}_{4}}{10} \\
& =4 \mathrm{~b}+\frac{816-11 \mathrm{~b}_{3}-4 \mathrm{~b}_{4}}{10} .
\end{aligned}
$$

Since $\mathrm{b} \leq 75$, we have

Lemma 4 If there is an exact 3-cover of 18 points having $\mathrm{b} \leq 75$ blocks, then $\mathrm{N}=\mathrm{D}_{\mathrm{i}=1}^{\mathrm{b}} \mathrm{k}_{\mathrm{i}} \leq \frac{3816-11 \mathrm{~b}_{3}-4 \mathrm{~b} 4}{10}$.

$$
\text { For any point } x_{i} \text { of } x \text { let } D_{i}=\left\{B \backslash\left\{x_{i}\right\}: x_{i} \in B \in B\right\} \text {. }
$$

Each $D_{i}, 1 \leq i \leq 18$ is an exact 2-cover of 17 points (i.e. a pairwise balanced design or finite linear space (FLS)). Further, each D_{i} has only blocks of length $2,3,4$ or 5 . The following results on finite
linear spaces are useful.

Lemma 5 If a finite linear space has 17 points and no block of length exceeding 15, then (1) it has at least 20 blocks
(2) it can be embedded in a projective plane of order 4 if and only if it has 20 or 21 blocks
(3) it does not have exactly 22 blocks.

Proof: (1) is shown in [3]; (2) in [6]; and (3) in [5].

Thus, for any point x_{i} in an exact 3 -cover of 18 points, the derived linear space D_{i} has at least 20 blocks. For $1 \leq i \leq 18$, let $r_{i}=20+\beta_{i}$, where $\beta_{i} \geq 0$ by the above remark. If $\delta={ }_{i=1}^{18} \beta_{i}$, then $N=360+\delta$, so we have

Lemma 6 Under the above hypotheses, $10 \delta+11 b_{3}+4 b_{4} \leq 216$.

Now, for any finite linear space D with 17 points, define $C(D)$, the content of D, to be $C(D)=10 \ell-200+\frac{11 \ell_{2}}{3}+\ell 3$, where D has ℓ blocks and ℓ_{i} blocks of length $i, i \geq 2$. We have the following

Lemma $7 \underset{i=1}{18} \mathrm{C}\left(\mathrm{D}_{\mathrm{i}}\right)=10 \delta+11 \mathrm{~b}_{3}+4 \mathrm{~b}_{4}$.

Proof: $\quad{ }_{i=1}^{18} C\left(D_{i}\right)={ }_{i=1}^{18}\left[10 \ell\left(D_{i}\right)+\frac{11 \ell_{2}\left(D_{i}\right)}{3}+\ell_{3}\left(D_{i}\right)\right]-3600$
$=10{ }_{i=1}^{18} r_{i}+\frac{11}{3}\left(3 b_{3}\right)+4 b_{4}-3600$

$$
\begin{aligned}
& =10 N+11 b_{3}+4 b_{4}-3600 \\
& =10 \delta+11 b_{3}+4 b_{4} .
\end{aligned}
$$

$\underline{\text { Corollary } 8} \quad \sum_{i=1}^{18} C\left(D_{i}\right) \leq 216$

Let F denote the family of all finite linear spaces with 17 points which have only blocks of length $2,3,4$ or 5 . For $D \in F$, let $v_{2,3}=v_{2,3}(D)$ denote the number of points which occur in a block of length 2 or 3 .

Lemma 9 There are precisely three $D \in F$ with $\ell \leq 21$, having the following parameters:

FLS	ℓ	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	C	$v_{2,3}$
$\mathrm{~F}_{1}$	20	0	0	16	4	0	0
$\mathrm{~F}_{2}$	21	0	6	8	7	16	15
$\mathrm{~F}_{3}$	21	1	3	11	6	$16 \frac{2}{3}$	11

Proof: By Lemma 5, we know that any such FLS can be embedded in a projective plane of order 4. There are precisely three ways to delete four points from a plane of order 4: all four collinear; three collinear; and no three collinear. These yield, respectively, F_{1}, F_{3}, and F_{2}.

We need to explicitly mention one other FLS of F which we denote by F_{4}. Its parameters are $\ell=23,\left(\ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}\right)=(3,1,15,4)$,
$C=42$, and $v_{2,3}=4$. It can be constructed by replacing any line of length 4 in F_{1}, say $x_{1} x_{2} x_{3} x_{4}$ by the four lines $x_{1} x_{2} x_{3}, x_{1} x_{4}, x_{2} x_{4}$, and $x_{3} x_{4}$. Notice that F_{4} does not satisfy condition (2) of the following Lemma.

Lemma 10 Suppose that every $D \in F$ with $\ell>21$ satisfies
(a) $C(D) \geq 33$.

Further, suppose that every $D \in F$ with $\ell>21$, other than F_{4}, satisfies
(b) $\quad\left(v_{2,3}+1\right) C>216$.

Then $g(1,3 ; 18) \geq 76$.

Proof: First suppose that $D_{i} \not \approx F_{1}$ for $1 \leq i \leq 18$. Then $b_{5}=\frac{16.18}{5}$ is not an integer, a contradiction. Thus some derived FLS has non-zero content. We may suppose that D_{1} has the minimum non-zero content, of all the $D_{i}, 1 \leq i \leq 18$. We have three cases.

Case (1): $\quad D_{1} \cong F_{2}$. We have $v_{2,3}\left(D_{1}\right)=15$, so there are at least 16 points x_{i} such that D_{i} has non-zero content. By the minimality of $C\left(D_{1}\right)$ we obtain

$$
i \sum_{1}^{18} C\left(D_{i}\right) \geq 16 . C\left(D_{1}\right)=256>216, \text { contradicting }
$$

Corollary 8.

Case (2): $\quad D_{1} \cong F_{3}$. Suppose first that $D_{i} \cong F_{1}, F_{2}$, or F_{3}, for all
i, $1 \leq i \leq 18$. For $1 \leq j \leq 3$, let a_{j} denote the number of points x_{i} such that $D_{i} \cong F_{j}$. Then $a_{2}=0$ since case (l) does not hold; so
$a_{1}+a_{3}=18$. Then $b_{5}=\left(\left(18-a_{3}\right) 16+a_{3}, 11\right) / 5=288 / 5-a_{3}$ is not an integer, a contradiction.

Thus there is a point, say x_{18}, with $\ell\left(D_{18}\right) \geq 22$. We use property (a) of the hypothesis.

Since $C\left(D_{18}\right) \geq 33$, then

$$
\begin{aligned}
{ }_{i=1}^{18} C\left(D_{i}\right) & \geq v_{2,3} \cdot C\left(D_{1}\right)+C\left(D_{18}\right) \\
& \geq 11 \cdot 16 \frac{2}{3}+33=216 \frac{1}{3}>216,
\end{aligned}
$$

a contradiction.

Case (3): $\quad D_{1} \tilde{F} F_{1}, F_{2}$ or F_{3}. If $\mathrm{D}_{1} \tilde{\nexists} \mathrm{~F}_{4}$, we may apply property (b) of the hypothesis, containing

$$
{ }_{i}{ }_{i=1}^{18} C\left(D_{i}\right) \geq\left(v_{2,3}\left(D_{1}\right)+1\right) C\left(D_{1}\right)>216,
$$

a contradiction.
Now suppose $\mathrm{D}_{1} \cong \mathrm{~F}_{4}$. We have $\mathrm{E}_{\mathrm{E}}^{\underline{\sum_{1}}} \mathrm{C}\left(\mathrm{D}_{\mathrm{i}}\right) \geq\left(\mathrm{v}_{2,3}\left(\mathrm{~F}_{4}\right)+1\right) . \mathrm{C}\left(\mathrm{F}_{4}\right)$ $=210$. If ${ }_{i=1}^{18} \mathrm{C}\left(\mathrm{D}_{\mathrm{i}}\right)<216$ we must have only five points with non-zero content (since $6.42>216$), say $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.

We may suppose that $x_{1} x_{2} x_{3} x_{4}, x_{1} x_{2} x_{5}, x_{1} x_{3} x_{5}$, and $x_{1} x_{4} x_{5}$ are four blocks of the cover, since $D_{1} \cong F_{4}$. Now x_{1}, \ldots, x_{5} are the only points of non-zero content, so the blocks in the cover of length 3 and 4 contains only the points x_{1}, \ldots, x_{5}, so $x_{1} x_{2} x_{3} x_{4}$ is the only block of length 4. Thus $\mathrm{D}_{5} \widetilde{\neq \mathrm{F}_{4}}$.

In D_{5} we have $\ell_{2} \geq 3, \ell_{3}=0, \ell \geq 23$, and $42 \leq C \leq 48$. Since $\sum_{j=2}^{5}\left(\frac{j}{2}\right) \ell_{j}=136, \ell_{2}+\ell_{3}$ is even; so $\ell_{2} \geq 4$.

Then $C \geq 30+4 \cdot \frac{11}{3}=44 \frac{2}{3}$. Since $C \leq 48$, we must have $\ell_{2}=4, \ell_{3}=0$, and $\ell=23$. Solving for ℓ_{4} and ℓ_{5}, we find they are non-integral. It follows that the hypothesized cover does not exist.

The remainder of this section is devoted to showing that conditions (a) and (b) of Lemma 10 hold. Notice that the problem is now reduced to establishing certain facts concerning finite linear spaces.

Lemma 11 A finite linear space $D \in F$ with $\ell>21$ has $C(D) \geq 33$.

Proof: By Lemma 5, $\ell \neq 22$. If $\ell \geq 24$, then $C \geq 40$; thus $\ell=23$, and $C=30+\frac{11}{3} \ell_{2}+\ell_{3}$. In order that $C \leq 33, \ell_{2}=0$ and $\ell_{3} \leq 3$. We have noted that $\ell_{2}+\ell_{3}$ is even. Thus $\left(\ell_{2}, \ell_{3}\right)=(0,0)$ or $(0,2)$.

Given ℓ_{2} and ℓ_{3}, the system $\sum_{i=2}^{5}\left(\frac{i}{2}\right) \ell_{i}=136, \quad \sum_{i=2}^{5} \ell_{i}=23$ has a unique solution. If $\left(\ell_{2}, \ell_{3}\right)=(0,0)$, then $\ell_{5}<0$. If $\left(\ell_{2}, \ell_{3}\right)=(0,2)$, then $\left(l_{2}, l_{3}, l_{4}, l_{5}\right)=(0,2,20,1)$. However, the packing number $D(2,4,17)$ $=20$ (see [1]), so $\ell_{4}+\ell_{5} \leq 20$. Thus there is no FLS $D \in F$ with $\ell>21$ and $C(D)<33$.

Now, we wish to establish that for all $D \in F, D \not \approx F_{4}$, $\left(v_{2,3}+1\right) \cdot C>216$.

An FLS is said to be triangle-free if there do not exist three blocks of the form $x y, x z, y z$.

Let F_{Δ} denote the collection of $F L S\{F: F \in F, F$ is trianglefree\}. We note that $F_{4} \in F_{\Delta}$).

Lemma 12 Suppose that for all $D \in F_{\Delta}$ with $\ell \geq 22$, other than F_{4}, $\left(v_{2,3}+1\right) \cdot C>216$. Then, for all $D \in F$ with $\ell \geq 22, D \not{F} F_{4}$, We have $\left(v_{2,3}+1\right) \cdot C>216$.

Proof: Let $D \in F \backslash F_{\Delta}$ (thus $D \tilde{F} F_{4}$). Then D contains a triangle, say $x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}$. Let D^{\prime} denote the FLS obtained by deleting $x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}$, and adding the block $x_{1} x_{2} x_{3}$. It can easily be seen that $v_{2,3}(D)=v_{2,3}\left(D^{\prime}\right)$ and $C(D)>C\left(D^{\prime}\right)$, Keep repeating this process as long as possible, obtaining $D_{1} \in F_{\Delta}$. Then $\left(v_{2,3}(D)+1\right) . C(D)>$ $\left(\mathrm{v}_{2,3}\left(\mathrm{D}_{1}\right)+\mathrm{l}\right) \cdot \mathrm{C}\left(\mathrm{D}_{1}\right)$. If D_{1} has $\ell \geq 22$ then $\left(\mathrm{v}_{2,3}(\mathrm{D})+1\right) \cdot \mathrm{C}(\mathrm{D})>216$ (even if $D_{1}=F_{4}$). If D_{1} has $\ell \leq 22$ then $D_{1} \cong F_{2}$ or F_{3}, since F_{1} contains no blocks of length 3 . Now $\left(v_{2,3}\left(F_{2}\right)+1\right) . C\left(F_{2}\right)>216$, so we need only consider the case where $D_{1} \cong F_{3}$. Then $v_{2,3}(D) \geq 11$, and $C(D) \geq 30$, (since $\ell(D) \geq 23$), so $\left(v_{2,3}(D)+1\right) . C(D)>216$. This completes the proof.

Lemma 13 If $D \in F_{\Delta}$ has $\ell \geq 22$ and $\left(v_{2,3}+1\right) . C \leq 216$ then
(i) $\quad v_{2,3} \leq 5$
(ii) $\quad \ell_{3} \leq 2$
(iii) $\quad \ell_{2} \leq 4$

Proof: Recall that $\ell \geq 23$ and $C \geq 33$. Then $v_{2,3} \leq\left\lfloor\frac{216}{33}\right\rfloor-1=5$, proving (i).

Next, three blocks of length 3 contain at least six distinct points, since pairs are not repeated.

This proves (ii).

To prove (iii) we use the assumption that D is triangle-free. Assume $\ell_{2} \geq 5$; then $v_{2,3} \geq 5$. Since also $v_{2,3} \leq 5$, we have $v_{2,3}=5$. Then $C \geq 30+5 \cdot \frac{11}{3}=47 \frac{2}{3}$, so $\left(v_{2,3}+1\right) \cdot C>216$, a contradiction. Thus $\ell_{2} \leq 4 . \square$

Lemma 14 If $D \in F_{\Delta}$ has $\ell \geq 22$, then $\left(v_{2,3}+1\right) \cdot C>216$, unless $D \cong F_{4}$.

Proof: Assume $\left(v_{2,3}+1\right) . C \leq 216$. We have noted that $\ell \geq 23$, and $\ell_{4}+\ell_{5} \leq \mathrm{D}(2,4,17)=20$; thus $\ell_{2}+\ell_{3} \geq 3$. Since $\ell_{2}+\ell_{3}$ is even, $\ell_{2}+\ell_{3} \geq 4$. Then, by Lemma $13, \ell_{2}+\ell_{3}=4$ or 6 , and $\left(\ell_{2}, \ell_{3}\right)=(4,2)$ $(4,0),(3,1)$, or $(2,2)$.

Assume that $\ell \geq 24$. Then $C \geq 40$, so $v_{2,3} \leq 4$. Hence $\ell_{3} \leq 1$, and $\ell_{2} \geq 3\left(\ell_{2}+\ell_{3} \geq 4\right)$. Now $C \geq 40+3 \cdot \frac{11}{3}=51$, so $v_{2,3} \leq 3$. But $\ell_{2} \geq 3$ also implies that $v_{2,3} \geq 4$, since D is triangle-free. This is a contradiction.

Thus $\ell=23$. Given ℓ_{2} and ℓ_{3}, we may uniquely determine $\ell_{2}, \ell_{3}, \ell_{4}$, and ℓ_{5}. If $\left(\ell_{2}, \ell_{3}\right)=(3,1)$, then $\mathrm{D} \tilde{\sim}_{4}$. If $\left(\ell_{2}, \ell_{3}\right)=(4,0)$ or $(2,2)$, then ℓ_{4} and ℓ_{5} are non-integral. Finally, if $\left(\ell_{2}, \ell_{3}\right)=(4,2)$, then $C \geq 30+4 \cdot \frac{11}{3}+2>45$, and $v_{2,3} \geq 5$, so $\left(v_{2,3}+1\right) \cdot C: 216$. This completes the proof.

Theorem 15

$$
g(1,3 ; 18)=76
$$

Proof: The above Lemmata $10,11,12$, and 14 prove that $g(1,3 ; 18) \geq 76$, and Lemma 1 establishes that $g(1,3 ; 18) \leq 76 . \quad \square$

References

[1] A. E. Brouwer, Optimal Packings of K_{4} 's into a K_{n}, Journal of Combinatorial Theory A 25 (1979), 278-297.
[2] A. Hartman, R. C. Mullin, and D. R. Stinson, Exact covering configurations and Steiner systems, Journal of London Math. Soc., to appear.
[3] R. C. Mullin and D. R. Stinson, Preprint.
R. G. Stanton and J. G. Kalbfleisch, The $\lambda-\mu$ problem: $\lambda=1$ and $\mu=3$, Proc. Second Chapel Hill Conf. on Combinatorics, Chapel Hill (1972), 451-462.
D. R. Stinson, The non-existence of certain finite linear spaces, preprint.
[6] P. de Witte, On the embedding of linear spaces in projective planes of order n, Trans. Amer. Math Soc. (to appear).

