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1. Introduction

A Howell design of side s and order 2n, or, more briefly,
an H(s,2n), is an s by s array H, in which each cell either is empty
or contains an unordered pair of elements (called symbols), chosen from

some set S of size 2n, which satisfies:

(1) every symbol occurs in exactly one cell of each row and

column of H (i.e. each row and column is Latin).

(2) no unordered pair of symbols occurs in more than one cell of
H. The spectrum of Howell designs has recently been

determined.

Theorem 1.1. An H(s,2n) exists if and only if n < s £ 2n-1 and

(s,2n) # (2,4), (3,4), (5,6) or (5,8).

Proof. For s odd the result was established by Stinson [3]; for
s even, by Anderson, Schellenberg, and Stinson [1]. [ s

Property (2) may be rephrased as "every unordered pair of
symbols occurs in either zero or one cell of H". This suggests the

following more general definition for Howell designs: replace property
(2) by

2" every unordered pair of symbols occurs in either A or A+l

cells of H, for some non—-negative integer A .

We refer to such an array as a Howell design (of index X).
We shall see that X is determined by the values of s and 2n. If

we wish to emphasize the value of A we will use the notation H(s,2n3\ ).
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A symbol occurs s times in an H(s,2n), and it occurs with

every other symbol either A or A+l times. Thus we obtain

A(2n-1) < s < (A+1)(2n-1).

If X =0 we have the additional constraint n < S, since at most 2s
symbols can occur in a row of H.
In the boundary cases s = \(2n-1), every pair occurs exactly
A times. Such a design may be denoted either H(s,2n;x-1) or H(s,2n;\).
In this paper we establish precisely for which ordered pairs

(s,2n) a Howell design (s,2n) exists (of the appropriate index 1).

24 Constructions

Our main recursive construction is a simple "direct sum"
construction. Let Hi’ for i = 1,2, be an H(si,2n;&i) on symbol set
I7n: {1,...,2n}. The direct sum H = Hl & H2 (of H, and H2) will denote

the array

H

H

Under certain circumstances Hl & H2 will be a Howell design. It is
clear that this array is Latin, and that every pair of sumbols occurs

in either A1+X2, Al+k2~+1, or A1+X2+2 cells.

For any H(s,2nj;\) on symbol set I let G = G(H,X) be the

graph defined on vertex set IZn’ by joiningzzwo vertices i and j
by an edge if and only if {i,j} occurs A times in H. (We say that
G 1is the A-graph of H). Clearly, G(H, A+1) is the complement of
G(H, \).

There are two ways in which H, & H

1 2
no pairs occur X1+X2 times, or no pairs occur A1+X2+2 times. The

can be a Howell design:

A- and ( A+l)-graphs of Hl and H2 determine when these situations can

arise. We have the following obvious result.
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Lemma 2.1. For i = 1,2, let Hi be an H(si,Zn; Ai).

(1) If G(Hl’ Xl) and G(HZ’ Xz) contain no common edge, then

Hl & H2 is an H(sl + 32,2n; Xl+A2+-l).

(2) If G(Hl’ Al+l) and G(Hz, A2+l) contain no common edge, then
Hl & H2 is an H(sl+32,2n; A1+X2).

Corollary 2.2. If H is an H(t(2n-1),2n) for some ¢t 2 1, and H

1 2
is an H(s,2n; A) then Hl o H2 is an H(s+t(2n-1),2n; A +t).
Proof. Hy is an H(t(2n-1),2n;t), and G(Hl,t+1) contains no edges. []
Lemma 2.3. If there exists an H(t(2n-1),2n) for some t = 1, and

an H(s,2n), then there exists an H(s+tj(2n-1),2n) for all j = O.

Proof. Take the direct sum of an H(s,2n) and j copies of an

H(t(2n-1),2n). [I

Our second recursive construction uses the idea of "projections".
Let H be an H(s,2n; A). A transversal of H dis a set T of n

cells of H, no two in the same row or column, such that

(@D every symbol occurs in exactly one cell of T, and
(2) a pair of symbols in any cell of T occurs exactly A times
in H.

We project T as follows. Index the rows and columns of H

by IS, and then construct Hl’ with rows and columns indexed by Is+l’

by defining
H(i,3) if (i,j) d T

H(k,j) if i

]

s+t and (k,j) € T
H (1,3) =

H(i,k) if j s+1 and (i,k) € T

empty, otherwise
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then
The cells
The H(7,6;1)

is a transversal,

0
T 1is shown in Figure 2.

is an H(s,2n; A) and T
An H(6,6;1) is shown in Figure 1 below.

If H
Hl, described above, is an H(s+1l,2n; \).
The properties of T are precisely those that ensure that
An H(6,6;1).

will be a Howell design.
containing {4,6}, {2,5}, and {1,3} form a transversal T.

obtained by projecting

Example 2.5.

Lemma 2.4,
Proof.
Figure 1.
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Figure 2. An H(7,6;1)
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Two transversals T and T' of an H(s,2n; 1) are said to
be disjoint provided there does not exist a cell C, of T, and a cell
c', of T', such that C and C' contain the same pair (in particular,

C # C'). Several transversals are disjoint provided each pair is.

Lemma 2.6. If there exists an H(s,2n; A ) containing ¢t disjoint

transversals, then there exists an H(s+i,2n3A) for 0 < i < t.

Proof. The t transversals may be projected one by one. [J

3is The spectrum

Lemma 3.1. An H(s,2) exists for all s 2= 1.

I
(m3
"
5
n
-
O

is an H(1,2). Apply Lemma 2.3 with s

Lemma 3.2. An H(s,4) exists if and only if s > 6.

Proof. There are only four symbols, say {1,2,3,4}, so if {1,2}, say,
occurs in a cell of some H(s,4), then {3,4} occurs in both the row
and the column containing {1,2}. It follows that every pair occurs

either not at all or at least twice; thus s 2 6.

A
{ 12 : 34 {
An H(6,4) is shown in Figure 3. Replace S S
| 34| 123
7 . L ;
| 12§ 341 |
(R N A
by i 34_} ni 12] to construct an H(7,4). A similar operation
| 1 | |
A i
| 112 34|
Y IS
N T
}13{24= }l4:23:
on the blocks :-———r———ﬁ , and then {--—~r—--1 produces
|24 1 13 :23E14:

H(8,4) and H(9,4). The H(9,4;3) thus produced has two disjoint

transversals (it has three, but we only need two of them). Thus H(10,4)
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and H(11,4) can be produced, so we have H(s,4) for 6 < s < 11.
Now apply Lemma 2.3 with t = 2, n = 2 for each s, 6 <5 <11,
to obtain all H(s,4) with s = 6. []

Figure 3. An H(6,4)
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Lemma 3.3, An H(s,6) exists if and only if s > 3, s £ 5.
Proof. H(3,6) and H(4,6) exist, and H(5,6) does not exist, by

Theorem 1.1. An H(6,6) is given in Example 2.5. This H(6,6) has four
disjoint transversals, formed by the cells containing {4,6}, {2,5} and
{1,3}; {3,5), {1,4}, and {2,6}; {1,6}, {2,3}, and {4,5}; and {2,4}, {1,5},

and {3,6}. Thus we may construct H(s, 6) for 6 < s < 10.

We need three more small H(s,6): H(11,6), H(12,6), and

H(15,6). We construct these by direct sum. An H(3,6) is given by

| e it B e

| 14 125 E 36 |

| e B b

i 26 E 34 E 155 and its O-graph is two disjoint triangles.
e it

i 35 E 16 i 24E

Any H(4,6) has an O-graph which consists of three disjoint edges (i.e.
a l-factor of K6). It is easily seen that K6 may be partitioned into
two triangles and three l1-factors. Applying the direct sum construction
(and suitably relabelling designs), we construct H(s,6) for s = 11, 12,

and 15 (note: 11 = 3+4+4, 12 = 4+4+4, and 15 = 3+4+4+4) .
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Now apply Lemma 2.3 with t = 2, n =3, and s = 3,4,6,7,8,9,

10,11,12 and 15, to construct the desired H(s,6). []

In order to show the existence of H(s,2n) with n = 4, we
make essential use of Room cubes. A Room cube of side s is a three-
dimensional array of side s, each cell of which is either empty or
contains an unordered pair of symbols, such that each two-dimensional
projection is an H(s,st+l). The following is established in Dinitz and

Stinson [2].

Lemma 3.4. There exists a Room cube of side s if and only if s

is an odd positive integer other than 3 or 5.

Room cubes are of use in constructing Howell designs, as we

now demonstrate.

Lemma 3.5. There exists a Room cube of side s if and only if there

exists an H(s,s+l) containing s disjoint transversals.

Proof. Take a two-dimensional projection of a Room cube of side s,

to obtain an H(s,s+l;1). The filled cells in any "level" of the Room
cube become a transversal of the resulting H(s,s+l), and the s
transversals resulting from the s levels of the Room cube are disjoint.

The process can be reversed. []

Lemma 3.6. Let n = 4. Then there exists an H(s,2n) if and only

if s 2 n, (s,2n) # (5,8).

Proof. For s < 2n-1, the result is obtained from Theorem 1.1, so
assume s 2 2n-1. By lemmata 3.4 and 3.5, we have an H(2n-1,2n) with
2n-1 disjoint transversals. Using lemma 2.6, we can construct
H(s,2n) for 2n-1 < s < 4n-2. Now-apﬁly lemma 2.3 with t = 1 and

2n-1 £ s £ 4n—-2, to construct the remaining designs. []

Combining lemmata 3.1, 3.2, 3.3, and 3.6, we have our main

result.
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Theorem 3.7. Let s 2 n. Then an H(s,2n) exists if and only if

(s,2n) # (2,4), (3,4), (4,4), (5,4), (5,6) or (5,8).
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