A Generalization of Howell Designs

D. R. Stinson University of Waterloo

1. Introduction

A Howell design of <u>side</u> s and <u>order</u> 2n, or, more briefly, an H(s,2n), is an s by s array H, in which each cell either is empty or contains an unordered pair of elements (called <u>symbols</u>), chosen from some set S of size 2n, which satisfies:

- (1) every symbol occurs in exactly one cell of each row and column of H (i.e. each row and column is <u>Latin</u>).
- (2) no unordered pair of symbols occurs in more than one cell of H. The spectrum of Howell designs has recently been determined.

Theorem 1.1. An H(s,2n) exists if and only if $n \le s \le 2n-1$ and $(s,2n) \ne (2,4)$, (3,4), (5,6) or (5,8).

<u>Proof.</u> For s odd the result was established by Stinson [3]; for s even, by Anderson, Schellenberg, and Stinson [1].

Property (2) may be rephrased as "every unordered pair of symbols occurs in either zero or one cell of H". This suggests the following more general definition for Howell designs: replace property (2) by

(2') every unordered pair of symbols occurs in either λ or $\lambda+1$ cells of H, for some non-negative integer λ .

We refer to such an array as a Howell design (of <u>index</u> λ). We shall see that λ is determined by the values of s and 2n. If we wish to emphasize the value of λ we will use the notation $H(s,2n;\lambda)$.

CONGRESSUS NUMERANTIUM, Vol. 33 (1981), pp. 321-328.

A symbol occurs s times in an H(s,2n), and it occurs with every other symbol either λ or $\lambda+1$ times. Thus we obtain

$$\lambda$$
 (2n-1) \leq s \leq (λ +1)(2n-1).

If λ = 0 we have the additional constraint $n \le s$, since at most 2s symbols can occur in a row of H.

In the boundary cases $s = \lambda (2n-1)$, every pair occurs exactly λ times. Such a design may be denoted either $H(s,2n;\lambda-1)$ or $H(s,2n;\lambda)$. In this paper we establish precisely for which ordered pairs (s,2n) a Howell design (s,2n) exists (of the appropriate index λ).

2. Constructions

Our main recursive construction is a simple "direct sum" construction. Let H_i , for i=1,2, be an $H(s_i,2n;\lambda_i)$ on symbol set $I_{2n}=\{1,\ldots,2n\}$. The direct sum $H=H_1\oplus H_2$ (of H_1 and H_2) will denote the array

H₁ H₂

Under certain circumstances $H_1 \oplus H_2$ will be a Howell design. It is clear that this array is Latin, and that every pair of sumbols occurs in either $\lambda_1 + \lambda_2$, $\lambda_1 + \lambda_2^e + 1$, or $\lambda_1 + \lambda_2 + 2$ cells.

For any $H(s,2n;\lambda)$ on symbol set I_{2n} , let $G=G(H,\lambda)$ be the graph defined on vertex set I_{2n} , by joining two vertices i and j by an edge if and only if $\{i,j\}$ occurs λ times in H. (We say that G is the λ -graph of H). Clearly, $G(H,\lambda+1)$ is the complement of $G(H,\lambda)$.

There are two ways in which $H_1 \oplus H_2$ can be a Howell design: no pairs occur $\lambda_1^{+\lambda}_2$ times, or no pairs occur $\lambda_1^{+\lambda}_2^{+2}$ times. The λ - and $(\lambda+1)$ -graphs of H_1 and H_2 determine when these situations can arise. We have the following obvious result.

Lemma 2.1. For i = 1,2, let H_i be an $H(s_i, 2n; \lambda_i)$.

- (1) If $G(H_1, \lambda_1)$ and $G(H_2, \lambda_2)$ contain no common edge, then $H_1 \oplus H_2$ is an $H(s_1 + s_2, 2n; \lambda_1 + \lambda_2 + 1)$.
- (2) If $G(H_1, \lambda_1+1)$ and $G(H_2, \lambda_2+1)$ contain no common edge, then $H_1 \oplus H_2$ is an $H(s_1+s_2, 2n; \lambda_1+\lambda_2)$.

Corollary 2.2. If H_1 is an H(t(2n-1),2n) for some $t \ge 1$, and H_2 is an $H(s,2n;\lambda)$ then $H_1 \oplus H_2$ is an $H(s+t(2n-1),2n;\lambda+t)$.

<u>Proof.</u> H_1 is an H(t(2n-1),2n;t), and $G(H_1,t+1)$ contains no edges.

Lemma 2.3. If there exists an H(t(2n-1),2n) for some $t \ge 1$, and an H(s,2n), then there exists an H(s+tj(2n-1),2n) for all $j \ge 0$.

<u>Proof.</u> Take the direct sum of an H(s,2n) and j copies of an H(t(2n-1),2n).

Our second recursive construction uses the idea of "projections". Let H be an $H(s,2n;\lambda)$. A <u>transversal</u> of H is a set T of n cells of H, no two in the same row or column, such that

- (1) every symbol occurs in exactly one cell of T, and
- (2) a pair of symbols in any cell of T occurs exactly λ times in H.

We project T as follows. Index the rows and columns of H by ${\rm I_s}$, and then construct ${\rm H_1}$, with rows and columns indexed by ${\rm I_{s+1}}$, by defining

$$H_{1}(i,j) = \begin{cases} H(i,j) & \text{if } (i,j) \notin T \\ H(k,j) & \text{if } i = s+1 \text{ and } (k,j) \in T \\ H(i,k) & \text{if } j = s+1 \text{ and } (i,k) \in T \\ \text{empty, otherwise} \end{cases}$$

<u>Lemma 2.4</u>. If H is an $H(s,2n;\lambda)$ and T is a transversal, then H_1 , described above, is an $H(s+1,2n;\lambda)$.

 $\underline{\text{Proof.}}$ The properties of T are precisely those that ensure that H_1 will be a Howell design. \square

Example 2.5. An H(6,6;1) is shown in Figure 1 below. The cells containing $\{4,6\}$, $\{2,5\}$, and $\{1,3\}$ form a transversal T. The H(7,6;1) obtained by projecting T is shown in Figure 2.

Figure 1. An H(6,6;1).

T		T	r		r
12	34	56			10
			12	34	56
35	16	24			
46				15	23
	25		36		14
		13	45	26	

Figure 2. An H(7,6;1)

		 -	<u></u>	<u></u>	r	<u></u>
12	34	56		i		
			12	34	56	
35	16	24				
				15	23	46
			36		14	25
			45	26		13
46	25	13				

Two transversals T and T' of an $H(s,2n;\lambda)$ are said to be <u>disjoint</u> provided there does not exist a cell C, of T, and a cell C', of T', such that C and C' contain the same pair (in particular, $C \neq C'$). Several transversals are disjoint provided each pair is.

<u>Lemma 2.6</u>. If there exists an $H(s,2n;\lambda)$ containing t disjoint transversals, then there exists an $H(s+i,2n;\lambda)$ for $0 \le i \le t$.

Proof. The t transversals may be projected one by one. \square

3. The spectrum

Lemma 3.1. An H(s,2) exists for all $s \ge 1$.

Proof.
$$\begin{bmatrix} 12 \\ 12 \end{bmatrix}$$
 is an H(1,2). Apply Lemma 2.3 with s = t = n = 1.

Lemma 3.2. An H(s,4) exists if and only if $s \ge 6$.

<u>Proof.</u> There are only four symbols, say $\{1,2,3,4\}$, so if $\{1,2\}$, say, occurs in a cell of some H(s,4), then $\{3,4\}$ occurs in both the row and the column containing $\{1,2\}$. It follows that every pair occurs either not at all or at least twice; thus $s \ge 6$.

An H(6,4) is shown in Figure 3. Replace $\begin{bmatrix} 12 & 34 \\ 34 & 12 \end{bmatrix}$ by $\begin{bmatrix} 12 & 34 \\ 34 & 12 \end{bmatrix}$ to construct an H(7,4). A similar operation $\begin{bmatrix} 12 & 34 \\ 34 & 12 \end{bmatrix}$

on the blocks | 13 | 24 | , and then | 14 | 23 | produces | 24 | 13 | 24 | |

H(8,4) and H(9,4). The H(9,4;3) thus produced has two disjoint transversals (it has three, but we only need two of them). Thus H(10,4)

and H(11,4) can be produced, so we have H(s,4) for $6 \le s \le 11$. Now apply Lemma 2.3 with t = 2, n = 2 for each s, $6 \le s \le 11$, to obtain all H(s,4) with $s \ge 6$. \square

Figure 3. An H(6,4)

	12	34				
	34	12				
1			13	24		
1			24	13		ri
1					14	23
1					23	14

Lemma 3.3. An H(s,6) exists if and only if $s \ge 3$, $s \ne 5$.

Proof. H(3,6) and H(4,6) exist, and H(5,6) does not exist, by Theorem 1.1. An H(6,6) is given in Example 2.5. This H(6,6) has four disjoint transversals, formed by the cells containing $\{4,6\}$, $\{2,5\}$ and $\{1,3\}$; $\{3,5\}$, $\{1,4\}$, and $\{2,6\}$; $\{1,6\}$, $\{2,3\}$, and $\{4,5\}$; and $\{2,4\}$, $\{1,5\}$, and $\{3,6\}$. Thus we may construct H(s,6) for $6 \le s \le 10$.

We need three more small H(s,6): H(11,6), H(12,6), and H(15,6). We construct these by direct sum. An H(3,6) is given by

14	25	36
26	34	15
35	16	24

and its 0-graph is two disjoint triangles.

Any H(4,6) has an 0-graph which consists of three disjoint edges (i.e. a 1-factor of K_6). It is easily seen that K_6 may be partitioned into two triangles and three 1-factors. Applying the direct sum construction (and suitably relabelling designs), we construct H(s,6) for s=11,12, and 15 (note: 11=3+4+4, 12=4+4+4, and 15=3+4+4+4).

Now apply Lemma 2.3 with t = 2, n = 3, and s = 3,4,6,7,8,9, 10,11,12 and 15, to construct the desired H(s,6). \square

In order to show the existence of H(s,2n) with $n \ge 4$, we make essential use of Room cubes. A Room cube of side s is a three-dimensional array of side s, each cell of which is either empty or contains an unordered pair of symbols, such that each two-dimensional projection is an H(s,s+1). The following is established in Dinitz and Stinson [2].

<u>Lemma 3.4</u>. There exists a Room cube of side s if and only if s is an odd positive integer other than 3 or 5.

Room cubes are of use in constructing Howell designs, as we now demonstrate.

- <u>Lemma 3.5</u>. There exists a Room cube of side s if and only if there exists an H(s,s+1) containing s disjoint transversals.
- <u>Proof.</u> Take a two-dimensional projection of a Room cube of side s, to obtain an H(s,s+1;1). The filled cells in any "level" of the Room cube become a transversal of the resulting H(s,s+1), and the s transversals resulting from the s levels of the Room cube are disjoint. The process can be reversed. \square
- Lemma 3.6. Let $n \ge 4$. Then there exists an H(s,2n) if and only if $s \ge n$, $(s,2n) \ne (5,8)$.
- <u>Proof.</u> For $s \le 2n-1$, the result is obtained from Theorem 1.1, so assume $s \ge 2n-1$. By lemmata 3.4 and 3.5, we have an H(2n-1,2n) with 2n-1 disjoint transversals. Using lemma 2.6, we can construct H(s,2n) for $2n-1 \le s \le 4n-2$. Now apply lemma 2.3 with t=1 and $2n-1 \le s \le 4n-2$, to construct the remaining designs. \square

Combining lemmata 3.1, 3.2, 3.3, and 3.6, we have our main result.

Theorem 3.7. Let $s \ge n$. Then an H(s,2n) exists if and only if $(s,2n) \ne (2,4)$, (3,4), (4,4), (5,4), (5,6) or (5,8).

References

- [1] B.A. Anderson, P.J. Schellenberg and D.R. Stinson, The existence of Howell designs of even side, Journal of Combinatorial Theory, Series A, submitted.
- [2] J.H. Dinitz and D.R. Stinson, The spectrum of Room cubes, European Journal of Combinatorics, (to appear).
- [3] D.R. Stinson, The existence of Howell designs of odd side, Journal of Combinatorial Theory, Series A, (to appear).