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Abstract

In this primarily expository paper, we discuss the connections between two
popular and useful tools in theoretical computer science, namely, universal
hashing and pairwise independent random variables; and classical combinatorial
stuctures such as error-correcting codes, balanced incomplete block designs,
difference matrices and orthogonal arrays.

1 Introduction

The concept known as “universal hashing” was invented by Carter and Wegman
[5] in 1979. In [29, p. 18], Avi Wigderson characterizes universal hashing as being
a tool which “should belong to the fundamental bag of tricks of every computer
scientist”. This is no exaggeration, as there are probably well in excess of fifty papers
in theoretical computer science that employ universal hashing as an important tool.
Several of the most attractive applications are outlined in the the lecture notes [29].

A closely related topic goes by several names: “strongly universal hashing” [27],
“two-point based sampling” [6], and “pairwise independent random variables” [11].
A recent paper by Wigderson [28], presented at the 26th Symposium on the Theory of
Computing Conference held in Montréal in 1994, is entitled “The Amazing Power of
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Pairwise Independence.” This paper contains a bibliography of 36 papers in computer
science concerning this topic.

The applications of these topics in computer science are numerous. Here are a
few examples:

e the static and dynamic dictionary problems
e partial and complete derandomization of randomized algorithms
e public vs. private coins in interactive proofs

e authentication codes

2 Definitions of Hash Families

We begin with the relevant definitions of various types of hash families.

DEFINITION  An (N;n,m)-hash family is a set of N functions 7 such that
f: XY

for each f € F, where |X| = n and |Y| = m. There will be no loss in generality in
assuming n > m. h

DEFINITION  An (N;n,m)-hash family is e-universal provided that for any two distinct
elements 1,7 € X, there exist at most eN functions f € F such that f(z1) = f(z2).
We will use the notation e-U as an abbreviation for e-universal.

The relevance of this definition to hashing is clear: If a function f is chosen at
random from a given U (N;n,m)-hash family, then the probability that any two
distinct inputs collide under f is at most e.

Two special cases of e-U hash families are of particular interest.

e The case € = 1/m is known as universal hashing. This is the definition originally
given in 1979 by Carter and Wegman [5].

e The case € = (n — m)/(m(n — 1)) is known as optimally-universal hashing.
(The reason for this terminology is that € > (n = m)/(m(n — 1)) in any U
(N;n,m) hash family; see Corollary 3.7.) This definition was first given in 1980
by Sarwate [21].

Here are some more definitions.



DEFINITION  Suppose that the functions in an (N;n,m) hash family, F, have range
Y = G, where G is an additive abelian group (of order m). F is called e-A universal
provided that for any two distinct elements z1,z2 € X and for any element y € G, there
exist at most eN functions f € F such that f(z;) — f(z2) = y. We will use the notation
e-AU as an abbreviation for e-A universal.

In the case where G = (Z3)* for some integer 4, the definition reduces to what
Krawczyk [15, 16] calls “c-opt secure” and Rogaway [20] terms “almost XOR univer-
sal” (in this situation, the difference of two £-tuples is the same thing as the bitwise
exclusive-or).

Here are yet more definitions.

DEFINITION  An (N;n,m) hash family is e-strongly universal [25] provided that the
following two conditions are satisfied:

1. for any element z € X and any element y € Y, there exist exactly N/m functions
f € F such that f(z) =y.

2. for any two distinct elements z;,z2 € X and for any two (not necessarily distinct)
elements g1, 2 € Y, there exist at most eN/m functions f € F such that f(z;) =
Yi, 1= 1,2.

We will use the notation ¢-SU as an abbreviation for e-strongly universal.

It is not difficult to see that € > 1/m in any e-SU (N;n,m) hash family; see
Theorem 5.1. The case when ¢ = 1/m was termed strongly universal (or SU) by
Wegman and Carter [27]. An SU hash family is the same thing as pairwise independent
random variables. That is, if a hash function f € F is chosen uniformly at random,
then it is easy to see that

1
p(z1 =y1,Z2 = y2) = p(T1 = 1) X p(T2 = 12) = ot

for all distinct 1,z € X and all 1,72 € Y.

Warning: Some authors refer to what we have defined as “strongly universal” as just
“universal”. It is true that strongly universal imples universal (see Theorem 2.1), but
the converse is not true. Thus we use the terms “strongly universal” and “universal”

- in accordance with the original Wegman-Carter definitions in order to differentiate
between the two classes.

For all the classes we have defined, we will be particularly interested in cases where
7 and m are powers of a given prime power q.

We will typically depict an (N;n,m) hash family in the form of an N x n array
of m symbols, where each row of the array corresponds to one of the functions in the



family. In the case of an e-U (N;n,m) hash family, this array has the property that,
for any two columns, there exist at most eN rows such that the entries in the two
given columns are equal. The array corresponding to an e-AU (N;n,m) hash family
has the property that, for any two columns, there exist at most eV rows such that
the entries in the two given columns have a specified difference. Finally, in the case
of an &SU (N;n,m) hash family, each element occurs the same number of times in _
each column, and if we inspect any two columns, we find every possible ordered pair
of elements occuring at most eN/m times.

In later sections, we will discuss in detail the relation between these hash families
and various types of classical combinatorial designs. For now we observe the following
relations between the classes we have already defined.

Theorem 2.1 Suppose F is an (N;n,m) hash family. Then the following implica-
tions hold:

1. If F is e-SU, then F is e-U.
2. If F is e-SU and Y is an abelian group, then F is e-AU.
3. If F is e-AU, then F is e-U.

Proof.

1. Suppose F is an €-SU hash family, and z;, z; are distinct elements in z. For each
y € Y, there are at most eN/m functions f € F such that f(z1) = f(z2) = y.
Since there are m choices for y, there are at most eN functions f € F such that

f(z1) = f(z2).

2. Suppose F is an -SU hash family, and Y is an abelian group. Let y be any
element in Y. For each y, € Y, there are at most eN/m functions f € F such
that f(z;) = y1 +y and f(z2) = y1. Note that, if f(z;) — f(z2) = y, then
f(z1) = y1 + v and f(z2) = y1 for a uniquely defined value y1 € Y. Since
there are m choices for yi, there are at most eN functions f € F such that

fl@r) - flz2) =y
3. The AU condition with y = 0 is the same as the e-U condition.

10



3 TUniversal Families and Codes

Universal hash families turn out to be equivalent to certain (error-correcting) codes,
which we now define.

DEFINITION  Let Y be an alphabet of N symbols. An (N, K, D, q) code is a set C
of K vectors in YV such that the Hamming distance between any two distinct vectors
in C is at least D. If the code is linear (i.e., if g is a prime power, Y = F,, and C is a
subspace of (F,)"), then we will denote it by an [N, k, D, g] code, where k = log, K is
the dimension of the code.

The following equivalence was first observed by Bierbrauer, Johansson, Kabatian-
skii and Smeets [2].

Theorem 3.1 If there exists an (N, K,D,q) code, then there ezists a (1 — 2)-U
(N; K, q) hash family. Conversely, if there ezists an e-U (N;n,m) hash family, then
there ezists an (N,n, N(1 — €),m) code.

Proof. Suppose C = {C,...,Ck} is the hypothesized code. Construct an N x K
array, A, in which the columns are the codewords in C. If we look at any two
columns of A, we see that they contain different entries in at least D rows. Setting
D = (1 — €)N, the associated hash family has e=1— D/N.

The process can be reversed: by taking the columns of the array associated with
an e-U (N;n,m) hash family as codewords of a code, we obtain an (N, n,d,m) code
withd > N(1 —¢). i

One nice application, mentioned in [2], uses Reed-Solomon codes. An extended
Reed-Solomon code is a linear code having parameters [g, k,q — k+1,¢], where k < ¢
and q is a prime power (see, for example, [18]). Applying Theorem 3.1, the following
is obtained.

Theorem 3.2 Suppose q is prime and 1 < k < q. Then there is a **-U (g;¢*,9)
hash family.

EXAMPLE  Suppose we take ¢ = 5, k = 3. We will construct a 2-U (5;125,5) hash
family, F.
We need a [5, 3, 3, 5] Reed-Solomon code, C. Such a code has generator matrix

b A R B |
G=|124320|.
14140

Saying that G is a generator matrix for C is equivalent to saying that the rows of G form
a basis for C.

11



There are five functions in F, which we denote by f;, i € Zs. Each f; : (25)* — Zs.
Now, a typical codeword in C is obtained by computing (a, b, ©)G, a,b,c € Zs. fi(a,b,c)
is computed by extracting the value of the ith co-ordinate from the codeword (a,b,0)G.
If we write G = (g;;), then gij = 2 mod 5 if 0 < j < 3. Thus it is not difficult to
compute the following formula for the hash functions fi, 1 €Zs:

[ a+bZ+offmod5 O<i<3
flab,el = { a ifi=d.

Codes from algebraic geometry can profitably be applied here; see Bierbrauer [1],

for example.
We now look at bounds on e-U hash families. Not surprisingly, we will employ

well-known bounds from coding theory. The Plotkin bound (see, for example (17, p.

58]) implies that
D _K(-1)

N~ (K-1)q
in any (N, K, D, q) code. It can be used to derive the foowing lower bound on e that
was first proved by Sarwate [21].

Theorem 3.3 If there exists an e-U (N;n,m) hash family, then
n—m

sz_(n:——l)

Proof. Using Theorem 3.1, construct an (N,n, N(1—e¢), m) code from the hash family.
This code must satisfy the Plotkin bound, so we obtain
N(l—¢) _n(m-1)
< .
N ~(n—-1)m

This simplifies to yield the desired result. 0

We can also employ the Plotkin bound to give a quick derivation of the following
lower bound on N which was proved from first principles by Stinson [25, Theorem
4.1].

Theorem 3.4 [25] If there egists an €-U (N;n,m) hash family, then

n(m—1)
2 Mem—n+md—o
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Proof. Using Theorem 3.1, construct an (N,n,N(1 — €),m) code from the hash
family, and then construct the shortened code (see [17, p. 45]), with parameters
(N — 1,n/m, N(1 — €),m). Since this shortened code must also satisfy the Plotkin

bound, we obtain
N(1—¢) = Z(m—1)

N-1 — (—"}l - 1) m
This simplifies to yield the desired result. 1]

3.1 U Families
As mentioned above, a =-U (N;n,m) hash family is often called “universal”, and

denoted as a U (N;n,m) hash family. Setting e = 1/m in Theorem 3.4, we get the
following result.

Corollary 3.5 [2{4] If there ezists a U (N;n,m) hash family, then N > n/m.

Here is an infinite class of optimal U hash families that can be produced from
first order Reed-Muller codes. A first order Reed-Muller code is a linear code having
parameters [¢*~!,a,¢*" — ¢°~2,q], where @ > 2 and ¢ is a prime power (see, for
example, [26, p. 44]).

Applying Theorem 3.1, we have the following.

Theorem 3.6 Suppose q is prime and a > 2. Then there is a -U (¢°';¢%,q) hash
family.

EXAMPLE  From a [4,3,2,2] Reed-Muller code, we can construct a 3-U (4;8,2) hash
family. The code has generator matrix

1111
G=|1100].
1010

This gives rise to the following hash family:

0|1]1]0]1]0]0]|1
0j0j1)1]1]|1|0]|0
0j1]0]1]|1)0]1]0
0]10]0]JO0J1]|1]|1]1

EXAMPLE  Froma [g,2,q—1, q] Reed-Muller code (which is the same as a [¢,2,9—1, q]
‘Reed-Solomon code), we can construct a %-U (¢; %, q) hash family, F, as follows. For
each z € T, let f; : Fy X Fq — Fy be defined as fz(y,2) = zy + 2.

13



3.2 OU Families
We stated earlier that an m'E;:"l) -U (N;n,m) hash family is known as optimally uni-
versal, and denoted as an OU (N;n,m) hash family.

Setting € = (n — m)/(m(n — 1)) in Theorem 3.4, we get the following result.

Corollary 3.7 [24] If there ezists an OU (N;n,m) hash family, then N 2> (n—
1)/(m—1).

It is possible to characterize the OU hash families in terms of resolvable balanced
incomplete block designs. We require some definitions before stating our main theo-
rems.

DEFINITION A (v,k, A)-BIBD (or balanced incomplete block design) is a pair (Y, B)
where Y is a set of v elements called points and B is a set of k-subsets of Y called blocks,
such that every pair of points occurs in exactly A blocks.

By elementary counting it can be shown that every point occurs in exactly

_AMv-=1)
i

blocks, and )
v A’ —v)
Bl =i kK k2-k

DEFINITION A (v,k, \)-BIBD, (Y, B), is said to be resolvable if B can be partitioned
into r parallel classes, each of which consists of v/k blocks that partition Y.

A famous inequality of Bose [3] states that b > v +r — 1 in a resolvable (v, k, A)-
BIBD (equivalently, r > k + A).
DEFINITION  If a resolvable (v, k, A)-BIBD has b = v+r—1 (equivalently, r = k+ 1),
then it is termed affine resolvable.

The following was first shown by Stinson in [24].

Theorem 3.8 An OU (N;n,m) hash family with is equivalent to a resolvable (v, k,A)-
BIBD, where v =n, k =n/m and A = N(n — m)/(m(n — 1)). The BIBD is affine
resolvable if and only if N = (n—1)/(m —1).

Affine resolvable BIBDs have been studied extensively. A survey was published
by Shrikhande [23]. On interesting property of affine resolvable BIBDs is that any
two blocks from diferent parallel classes have precisely k?/v points in common [3]. It
is also known that the parameters of an affine resolvable BIBD have the form k = sy,
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v=s2?uand A = (su—1)/(s— 1) for positive integers s and u (see [3]). However, the
only parameters for which affine resolvable BIBDs are known to exist are as follows
(see [23]):

1. An affine resolvable (g™, ¢q""!,(¢g"~! — 1)/(g — 1))-BIBD exists whenever q is
a prime power and n > 2. The blocks of the design are the hyperplanes of
AG(n,q), the n-dimensional affine geometry over F,.

2. An affine resolvable (4t,2t,2t — 1)-BIBD exists whenever a Hadamard matrix
of order 4t exists. (It is widely believed that Hadamard matrices exist for all
orders divisible by four. For a recent survey, see [22].)

We obtain the following optimal OU hash families as a consequence:

Corollary 3.9 [24]

1. Let q be a prime power and let a > 2 be an integer. Then there exists an OU
((¢* = 1)/(a—1); 4% q) hash family.

2. Suppose there is a Hadamard matriz of order n = 0 mod 4. Then there is an
OU (n — 1;n,2) hash family.

EXAMPLE  The following is an affine resolvable (9,3, 1)-BIBD:

{1,2,3} {4,5,6} {7,8,9}
{174’ 7} {2’5)8} {31 6’ 9}
{1,5,9} {2,6,7} {3,4,8}
{1,6,8} {2,4,9} {3,57}

It gives rise to the following hash family:

1({1]1|12(2]|2(3]|3|3
112131231 |2(3
1(2(3(3[1(2]2]|3]1
1(2(3[2|3|1]3]1]2
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4 AUniversal Families and Difference Matrices

Although e-AU hash families were defined only recently, many constructions for
strongly universal hash families use them either implicitly or explicitly. Examples
can be found in [9, 15, 16, 20] as well as in other papers. Thus we feel that AU
hash families are an important concept in their own right.

¢-AU hash families are closely related to difference matrices. Here is a definition
of these combinatorial structures.

DEFINITION  Let G be an additive abelian group. A (g, k; \) difference matrix defined
over G is a k x g\ matrix D = (d;;), such that, for all h,i such that 1 < h < i <k,
and for all elements z € G, there exist exactly A columns j (1 < j < gA) such that
dhj - d';j =1x.

Difference matrices are important structures in combinatorial design theory. For
a summary of the main results in this area, see [7].

We now begin our discussion of AU hash families. The following theorem has

an easy counting proof.
Theorem 4.1 If there ezists an e-AU (N;n,m) hash family, then € > 1/m.
Proof. Let z1,T, € X be distinct. For any y € Y/, let
Ny =|{f € F: f(z1) — f(z2) = ¥}
Then N, < eN for all y € Y, and

E N, =N.
yeY
Hence, € > 1/m. 1]

The next theorem provides the connection between e-AU hash families with small-
est possible € and difference matrices.

Theorem 4.2 A L-AU (N;n,m) hash family defined over an abelian group G of
order m is equivalent to an (m,n, N/m) difference matriz defined over G.

Proof. If we transpose a difference matrix, we obtain a matrix corresponding to a -
hash family of the desired type (and conversely). i}

It was shown by Jungnickel in 1979 [14] that k < Ag in any (g, k; \) difference ma-
trix. (Difference matrices in which equality holds are known as generalized Hadamard
matrices; see [8] for a survey.) Recasting Jungnickel’s bound in terms of AU hash
families, we obtain the following result.
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Theorem 4.3 If there ezists a =-AU (N;n,m) hash family, then N > n.

We will now prove a bound for e-AU (N; n,m) hash families that contains Theorem
4.3 as a special case. Our bound makes use of the well-known second Johnson bound
for constant-weight binary codes, which we define now. Consider a (N, K, D, 2) code,
C, over a binary alphabet Y = {0,1}. The code C is said to be a constant-weight code
if every codeword contains exactly w 1’s, for some integer w which we call the weight
of C.

The second Johnson bound states that

6N
K<te—
~ w2 —wN + 6N

in a constant-weight (N, K, 26,2) code having weight w.
Here is our new bound.

Theorem 4.4 If there exists an e-AU (N;n,m) hash family, then

n(m — 1)
“m—-n+men—1)

Proof. Without loss of generality, we can assume that there is one function h € F
such that h(z) = 0 for all z € X. (If F does not contain such a function h, then it
can easily be altered so that it does.) For any f € F and any y € G, define a function
fy : X — G by the rule

fy(@) = f(z) +y.

Then for any f € F and any y € G, define a function f, : X — {0,1} by the rule

2 a1 4if fille) =0
fy(@) = { 0 otherwise.

Now, consider the (N —1)m functions fy, f # h. Write these functions as an array,
and take the columns of this array as a code. This code is seen to be a constant-
weight (N — 1)m,n,2N (1 —€),2) code with weight w = N — 1. Applying the second
Johnson bound, we obtain the following:

& N1 -¢€¢(N-1)m
TEINCD)E—(N—-12m+ N(l— (N - )m’

Simplifying, we get the desired bound. 0
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Let us now look at constructions of optimal 2-AU (N ;n,m) hash families. As
mentioned above, these are equivalent to generalized Hadamard matrices. The fol-
lowing result on generalized Hadamard matrices is often attributed to Drake [10], but
it was in fact first proved by Bose and Bush in 1952 [4].

Theorem 4.5 Let q be a prime power. For any positive integers a, b such thata > b,
there ezists a (¢°,q% ¢*™®) difference matriz defined over (Fg)°.

The following class of optimal AU hash families is produced.

Corollary 4.6 Let q be a prime power. For any positive integers a,b such thata > b,
there ezists a 5-AU (¢° ¢%, q") hash family defined over (F,)°.

Here is a description of the hash family produced by this construction. Let X = Fga
and let G = (F,)’. X is a vector space over Fq of dimension a. Let ¢ : X — G be
any surjective linear transformation; then |61 ()| = ¢°° for every y € G. (For
example, if elements of X are represented as a-dimensional vectors over Fq, then
#(z) could be defined to be the last b co-ordinates of z.) Then F = {fz : = € A},
where fz(z) = ¢(zz). (Observe that the array representation of the hash family
is also a difference matrix as defined above; it is not necessary to transpose since

fz(2) = fx(z).)

EXAMPLE  We construct a 3-AU (8;8,4) hash family that is also a (8, 8; 2) difference
matrix over Zy X Z. We begin with the multiplication table of Fs = Zo[z]/(2® + = + 1),
where the polynomial az? + bz + c is represented by the triple abc:

000 001 010 011 100 101 110 111
000 [ 000 000 000 000 000 000 000 000
001 {000 001 010 011 100 101 110 111
010|000 010 100 110 011 001 111 101
011|000 011 110 101 111 100 001 010
100 | 000 100 011 111 110 010 101 001
101 {000 101 001 100 010 111 011 110
110|000 110 111 001 101 011 010 100
111000 111 101 010 001 110 100 011

Then we take the last two co-ordinates of each entry in the table to construct the hash
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family:

0000 (00 |00|00/00(00|O00
00)01(10f{11{00|01 (10|11
00(10]00(10)11)01|11(01
00(11]10|01|11|00)01|10
00(00|11f11)10|10|01 (01
00(01]01{00|10|11|11(10
00/10|11({01({01|11[10|00
00)11(01{10|01]|10{00]11

Let us compare the construction above with a recent construction given by Man-
sour, Nisan and Tiwari [19] that uses Toeplitz matrices. An a x b matrix S = (s;;)
is called a Toeplitz matriz if s;41,j41 = siy; for all 4,7 such that 1 < i < a—1 and
1< 7 < b—1. Thus a Toeplitz matrix is defined by the a+b—1 entries in its first row
and column. Let S(a,b) denote the set of all a x b Toeplitz matrices over F,. For any
S € S(a,b), define a function fs : (F;)* — (F,)®, where fs(z) = zS, z € (F)*. Then
it can be shown that {fs : S € S(a,b)} comprises a -AU (¢°**~'; ¢*,¢°) hash family
defined over (F,)®. Thus the hash families from Theorem 4.6 would be preferred since
they are smaller.

It is also possible to use certain error-correcting codes to construct e-AU hash
families for various values of e. Here is a very useful construction, which is essentially
the same as the q-twisted construction of Johansson, Kabatianskii and Smeets [12, 13].

Theorem 4.7 If there exists an [N, k, D, q] code C with the property thate = (1,...,1) €
C, then there ezists a (1 — 2)-AU (N;¢*7',q) hash family defined over F,.

Proof. Let Ci,...,Cp-1 be a set of representatives of the quotient space C/(e).
Construct a N x g¥~! array, A, in which the columns are the codewords C4, ..., Cgr-1.
As usual, the rows of this array will represent the hash functions in our family 7. We
will now determine e such that F is an e AU (N;¢*!,q) hash family.

Let us consider two columns of A, say C;,Cj, and let z € F,. Let § denote the
number of co-ordinates h such that C;(h) — Cj(h) = z. Now it is easy to see that
C; — Cj, which is a codeword in C, has exactly § co-ordinates containing the symbol
z. Hence d(C; — Cj,ze) = N — 6.

On the other hand, the vector ze is a codeword in C, and C; — C; # e since the
Ci’s were chosen from the quotient space. Hence, d(C; — Cj,ze) > D.

Combining the two inequalities, we see that § < D — N, from which it follows
that e<1— D/N. il

We can use (extended) Reed-Solomon codes here in a similar fashion as was done in
Theorem 3.2. Note that, in the usual presentation of Reed-Solomon codes, (1,...,1)
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is a codeword. From a code of this type having parameters lg,k,q — k +1,q], where
k < q and q is a prime power, the following is obtained by application of Theorem
4.7.

Theorem 4.8 Suppose q is prime and 1 < k < q. Then thereis a ELAU(g 1,9
hash family.

EXAMPLE Earlier, we constructed a %—U (5;125,5) hash family from a 5,3,3,5]
Reed-Solomon code, C. We now use the same code to produce a 2-AU (5;25,5) hash
family, F. Recall that C can be constructed from the generator matrix

1 11
G=|1 3 0].
1 4 0

Hence, it is clear that (1,1,1,1,1) € C.
There are five functions in F, which we denote by f;, i € Zs. Each f; : (zs5)? — Zs,
where

N
k=

b2+ c4fmod5 f0<i<3
f‘(b’0)={ 0 if i = 4.

5 Strongly Universal Families and Orthogonal Ar-
rays
The following bound has a trivial counting proof.
Theorem 5.1 If there ezists an e-SU (N;n,m) hash family, then € > 1/m.
Proof. Let z,,z2 € X be distinct elements. For any 1,3 € Y, let
Ny = {f € F: f(@1) =91, f(22) = e} -
Then Ny, 4, < eN/m for all y1,3; € Y, and

> Nywm=N.

y1,¥2€Y

Hence, € > 1/m. il

20



€-SU hash families with smallest possible € are equivalent to orthogonal arrays,
which are defined as follows.

DEFINITION  LetY be a set of v symbols. An orthogonal array OAx(k,v) is a \w? x k
array A of elements from Y, such that, within any two columns of A, every possible
ordered pair of symbols occurs in exactly A rows.

The following theorem is easy to prove.

Theorem 5.2 [24] A ;L—-SU (N;n,m) hash family is equivalent to an orthogonal
array OAx(n,m) in which A = N/m?.

Proof. If we write the functions in a £-SU (N;n,m) hash family as the rows of an
N x n array, then we obtain an OAp/m2(n,m), and conversely. ]

We now turn to bounds on the size of e-SU hash families. The following bound,
proved in [25] from first principles, can also be obtained by an appropriate application
of the second Johnson bound for constant weight binary codes. The proof is similar
to that of Theorem 4.4.

Theorem 5.3 If there ezists an e-SU (N;n,m) hash family, then

n(m — 1)2
me(n—1)+m—n’

N>1+
Proof. Let y € Y be any symbol. Without loss of generality, we can assume that
there is one function h € F such that h(z) = y for all z € X. (If F does not contain
such a function h, then it can easily be altered so that it does.) For any f € F, define
a function f: X — {0,1} by the rule

f(x)={ 1 if fz)=y

0 otherwise.

Now, consider the N — 1 functions f, f # h. Write these functions as the rows
of an array, and take the columns of this array as a code. This code is seen to be a
constant-weight (N —1,n,2N (1 —¢€)/M, 2) code with weight w = N/m—1. Applying
‘the second Johnson bound, we obtain the following:
% ml-W -1
T(E—) (o) W-D+E1-9WN-1)

Simplifying, we get the desired bound. 1]
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Let’s look at some constructions for e-SU hash families. One easy way to construct
these families uses e-AU hash families.

Theorem 5.4 If there exists an e-AU (N;n,m) hash family, then there exists an
e-SU (Nm;n,m) hash family,

Proof. Let F be the hypothesized eAU (N ;n,m) hash family, defined over the
abelian group G. For any f € F and any y € G, define a function f, : X — G by the
rule
fy(@) = f(=) +v.

Then define F' to consist of all the functions f,, f € F, y € G. It is easily seen that
F'is an e-SU (Nm;n,m) hash family. i}

The following theorem is an immediate corollary of Theorem 5.4 and Corollary
4.6. The equivalent class of orthogonal arrays was first constructed by Bose and Bush

[4].

Theorem 5.5 Let ¢ be a prime power. For any positive integers a, b such thata > b,
there ezists z-SU (¢**% ¢%,¢") hash family.

The special case a = b =1 is of particular interest: a %-SU (¢% ¢, ) hash family
is called “two-point sampling” by Chor and Goldreich [6]. The reason for this termi-
nology is that two elements of F, suffice to select a hash function f from this family,
from which a sequence of g elements of F, is obtained by evaluating f at the g points
in F,. (This is the basis for a particularly simple derandomization technique.)

A %-SU (¢%; ¢, g) hash family is of course equivalent to an orthogonal array OAi(g, ¢),
which is easily obtained from the Desarguesian affine plane of order g, AG(2,¢q). The
associated hash family F = {fa,a,b € Fq}, where

far(z) = az +b.

It is interesting to note that Chor and Goldreich attribute this construction to Joffe
[11], who presented it as a construction for pairwise independent random variables in
1971. Of course this structure has been known for many years in the context of finite
geometries, statistical and combinatorial designs.

We now look at a composition construction from [25] that is based on an idea
of Wegman and Carter [27]. The next theorem shows how to compose an €1-U hash
family with an €,-SU hash family and obtain an (e2 + €2)-SU hash family.

Theorem 5.6 [25] Suppose there ezists an €,-U (Ny;n,mq) hash family and an &-SU
(Ny; my,my) hash family. Then there is an (€2 + €)-SU (N1Ng;n,ms) hash family.
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Proof. Let F and G be the €;-U and e-SU hash families, resepctively. We can assume
that f: X — Yi forevery f € Fand g:Y; — Y, for every g € G, where |[X|=n
and |Y;| = my, 1 = 1,2. For every f € F and every g € G, define a hash function

fog: X — Y, by the rule
(f 0 9)(z) = 9(f(2)),

A and let
H={fog:feF,geg}
We will show that H is an (e2 + €2)-SU (N1 N2; n, my) hash family.
Let 21,72 € X (z1 # z2) and let 31,32 € Y2. We need to compute an upper bound
on the number of functions h € H such that h(z;) =y, i =1,2.
We first consider the case when y; = y» =y, say. Let
E={f€F: flz) = f(z2)}
and let @ = |€|. Since F is an €;-U hash family, we have that a < ¢ N;. For any
f € &, there are exactly No/ms functions g € G such that g(f(z1)) = g(f(z2)) = v.
On the other hand, for any f € F\&, there are at most e2N2/mo functions g € G
such that g(f(z1)) = g(f(22)) = v-
Hence, the number of functions h € H such that h(z;) = h(z;) = y is at most

o % Ny +(Ny — a) x Ny _ Ny(a+ (M — a)e)

my ma e
Ng (a + Nlez)

m2
Ng(lel + N162)

ma
NlNz(El + 62)
mg ’

If 1 # y» then the number of functions h is less. Hence, property 2 of an SU

hash family is satisfied. .
It is trivial to prove property 1 of an SU hash family, and thus it follows that we

have an e-SU hash family with € < €; + €. 1]
Here is a very nice application of this technique that was presented in [2].

<
<

<

Theorem 5.7 [2] Suppose r and s are integers. Then there is a -SU (¢*+%;

“qr+9@*(@=D+D gr) hash family.

Proof. First, apply Theorem 3.2 with g replaced by ¢"** and k replaced by ¢°(¢—1)+1.
This produces a ’;;:LU (g7t2; g(rt9)(@*(@-D+) gr+s) hash family. Next, from Theorem
5.5, we obtain a —-SU (¢***;¢"**,¢") hash family. Now, applying Theorem 5.6, we
obtain the desireé hash family. i}
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Table 1: Constructions for Hash Families

msh family | e | N | n [ m [ source |

U 95—1 q ¢ q | Theorem 3.2
U : ¢! e ¢ | Theorem 3.6
oU e L3 ¢ q | Corollary 3.9
AU 9;—1 q s g | Theorem 4.8
AU 31; q* q¢°* ¢* | Corollary 4.6
SU T g¥+2e | gt @D+ | gb | Theorem 5.7
SU r @t ¢ ¢® | Theorem 5.5

6 Summary

The constructions, bounds and equivalences for hash families that we have presented
are summarized in tabular form.
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Table 2: Bounds for Hash Families

[ hash family | bound [ source |
eU €> mL(;l"—l)- Theorem 3.3
m—1
eU N > WE—%H—M;M Theorem 3.4
eAU e>1 Theorem 4.1
e-AU N > m—_—,':ér'"m—:(l,{—_—l) Theorem 4.4
e-SU €> ﬁ Theorem 5.1
e-SU N>1+ m_e(%(%):?; Theorem 5.3

Table 3: Equivalent Formulations of Hash Families

[ hash family | equivalent formulation [ source |

eU (N;n,m) (N,n, N(1 — €),m) code Theorem 3.1

OU (N;n,m) | resolvable (n,%,M)-BIBD Theorem 3.8

m(n—1)

1_AU (N;n,m) (m,n, %) difference matrix | Theorem 4.2

18U (N;n,m) OAN/m2(n, m) Theorem 5.2
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