THE CONSTRUCTION OF NESTED CYCLE SYSTEMS*
D.R. STINSON}{

Abstract. In this paper, we prove for any integer m > 3 that there exists a nested m-cycle
system of order n if and only if n = 1 mod 2m, with at most 13 possible exceptions (for each value
of m). ’

1. Introduction. Let G be a graph, and let m > 3 be an integer. An m-cycle
decomposition of g is an edge-decomposition of G into cycles of size m. We will
write the m-cycle decomposition as a pair (G, €), where € is the set of cycles in
the edge-decomposition. An m-cycle decomposition of K, will be called an m-cycle
system of order n. Of course, a 3-cycle system is a Steiner triple system; these
designs exist for all orders n = 1 or 3 modulo 6.

We will say that an m-cycle decomposition, (G,€), can be nested if we can
associate with each cycle C' € € a vertex of G, which we denote f(C), such that
f(C) ¢ C, and such that the edges in {{z,f(C)} : z € C,C € €} form an edge-
decomposition of G. Alternatively, we can view a nested m-cycle decomposition
as an edge-decomposition of the multigraph 2@ into wheels with m spokes, where
every edge occurs in one wheel of the decomposition as a spoke and in one wheel
on the rim.

It is easy to see that a necessary condition for the existence of a nested m-
cycle system of order n is that n = 1 mod 2m. The first examples of nested
m-cycle systems to be studied in the literature were nested 3-cycle systems (i.e.,
nested Steiner triple systems). It was proved by Stinson [5] that there exists a
nested Steiner triple system of order n if and only if n = 1 modulo 6. In the
smallest even-cycle case, m = 4, it has been shown by Stinson [6] that the necessary
condition n = 1 mod 8 is sufficient for existence, with the possible exceptions
n = 57,65,97,113,185 and 265. More recently, Lindner, Rodger and Stinson [3]
showed for each odd m > 3 that there exists a nested m-cycle system of order n if
and only if n = 1 mod 2m, with at most 13 possible exceptions. Then, Lindner and
Stinson [4] proved for any even m > 4 that there exists a nested m-cycle system of
order n if and only if n = 1 mod 2m, with at most 13 possible exceptions.

In this paper, we give a condensed proof of these existence results.

2. Some constructions. In this section, we present a small number of direct
and recursive constructions for nested cycle decompositions that will enable us
to prove our existence results in Section 3. Many of these constructions involve
nested cycle decompositions of complete multipartite graphs. We refer to the parts
of a complete multipartite graph as holes. The type of a complete multipartite
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graph is defined to be the multiset consisting of the sizes of the holes. We usually
use an “exponential” notation to describe types: a type t]'t;?...t;* denotes u;
occurrences of t;,1 <i < k. If T is the type t]'t;?...1,* and m is an integer, then
mT is defined to be the type (mt; ) (mtz)*2...(mtx)**. Also, we will denote the
complete multipartite graph having type T by K(T).

First, we give a multiplication construction for nested cycle decompositions of
complete multipartite graphs. '

Multiplication construction. Suppose there is a nested m-cycle decomposi-
tion of a complete multigraph K(T'). Let k > 1. Then there is a nested (km)-cycle
decomposition of K (kT).

Proof. Replace every vertex v of K(T) by k independent vertices, (named v;,1 <
i < k), thereby constructing K(kT). Let (K(T),C) be an m-cycle decomposition,
and let f be a nesting of €. Each cycle C € € corresponds to a subgraph of K(kT)
isomorphic to the Cartesian product C ® (K )¢ (each vertex of C is replaced by
k independent vertices, and each edge is replaced by k? edges forming a complete
bipartite graph K x). It is well-known that the graph C'® (K)® has an (mk)-cycle
decomposition (this is a decomposition into Hamiltonian cycles; see [1] or [2]). The
number of (mk)-cycles in this decomposition is k. Suppose these cycles are named
Ci,1 < i < k. We define a nesting by associating with each C; the vertex f(C);. If
we do this for every cycle C, we obtain the desired nesting. [

Let S be a set, and let {S;,...,S,} be a partition of S. An {Si,...S,}-Room
frame is an |S| by |S| array, F, indexed by S, which satisfies the following properties:

1) every cell of F either is empty or contains an unordered pair of symbols of
S,
2) the subarrays S; x S; are empty, for 1 < ¢ < n (these subarrays are referred
to as holes),
3) each symbol of S\S; occurs once in row (or column) s, for any s € S;,
4) the pairs occurring in F are those {s,t}, where (s,t) € (Sx5)\ Uiz, (Six S:).
We shall say that F is skew if, for any pair of cells (s,t) and (t,s), where
(s,t) € (S x S)\ U(S; x S;), precisely one is empty. The type of F is defined to
be the multiset {|S;| : 1 < ¢ < n}. As before, we use an “exponential” notation to
describe types.
The next construction produces a nested cycle decomposition of a complete

multigraph from a skew Room frame.

Skew Room frame construction. [3, Theorem 3.1] Suppose there is a skew-
Room frame of type T. Let m > 3 be an integer. Then there is a nested m-cycle
decomposition of the complete multipartite graph K(mT).

Proof. Let r = |2]. For 0 < i < r, define d; = (—1)"*! |i21]. Let F be a
skew Room frame of type T based on symbol set X. We shall define our complete
multipartite graph K(mT) on vertex set X X Zn,,. The holes of K(mT) will be
S; X Z,, for every hole S; of the frame F.
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For any z,y,z € X, define C({z,y},z;0) to be the cycle

(z’ do)(y, dl )(I, d2), AR ('7"1 dr-—l)(za dr)(y’ dr—l)a e %y (1:, dl )(y1 dO)(x’ dO) if r is odd
(z,do)(y,d1)(z,d2),...,(y,dr-1)(z,d;)(z,d -1)y---,(z,d1)(y,do)(z,do) if 7 is even.

For any z,y,z € X and i € Z,, define C({z,y},z;1) to be the cycle obtained by
adding 7 to the second coordinate of each point in the cycle C({z,y},2;0), and
reducing modulo m.

For any unordered pair {z, y} from different holes of the frame F, define Row(z, y)
to be the row of F containing {z,y} in some cell, and define Col(z,y) to be the
column of F' containing {z,y} in some cell.

We construct our cycle decomposition as follows. For every unordered pair
{z,y} from different holes of F, and for every i € Zy,, take the cycle C({z,y},
Row(z,y);1), and nest it with the point Col(z,y). It is not too difficult to verify
that this produces a nested cycle decomposition of the complete multipartite graph;
the details of the verification are contained in [3]. 0

A group-divisible design, (or GDD)), is a triple (X, G,.A) which satisfles the fol-
lowing properties:

1) G is a partition of X into subsets called groups,
2) A is a set of subsets of X (called blocks) such that a group and a block
contain at most one common point, and
3) every pair of points from distinct groups occurs in a unique block.
The group-type (or type) of a GDD (X, G,A) is the multiset {|G|; G € G}. As before,
we use an “exponential” notation to describe group-types. We will say that a GDD
is a K-GDD if |A| € K for every A € A.

Our next construction uses group-divisible designs in a recursive construction.

GDD construction. Let (X,G,A) be a GDD having type T, and let
w: X — Zt U0 (we say that w is a weighting). For every A € A, suppose
there is a nested m-cycle decomposition for the complete multipartite graph having
type {w(z) : z € A}. Then there is a nested m-cycle decomposition for a complete
multipartite graph having type {3, cq w(z): G € G}

Proof. For every z € X, let s(z) be w(z) “copies” of z. For any subset
Y C X, define s(Y) = |,y s(z). For every A € A, suppose that (s(A),C(A)) is a
nested cycle decomposition of the complete multipartite graph of type
{w(z) : € A} having holes s(z),z € A. Let fa be a nesting of (s(4),C(A)).
Then (S(X),Uex €(4)) is a nested cycle decomposition of the complete multipar-
tite graph of type {3 ,cgw(z) : G € G} having holes s(G),G € §. We define a
nesting of this cycle decomposition by f(C) = f4(C) if and only if C € C(A4). D

Once we have constructed a nested cycle decomposition of a complete multipar-
tite graph, we can produce a nested cycle system by the usual technique of filling
in holes.
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Filling in holes construction. Suppose there is a nested m-cycle decompo-
sition for the complete multipartite graph K(T'), where T is the type t;*#3% ... gl
For 1 < i < k, suppose there is a nested m-cycle system of order ¢; + 1. Then there
is a nested m-cycle system of order Y1, (tiu; + 1).

We also use the following class of nested cycle systems which are constructed

by difference methods.

LEMMA 2.1. For all integers r > 3, there is a nested r-cycle system of order
2r + 1.

Proof. Define k = |=51], and define a = (ay,...,ar) by

a;=(-1)%,if1<i<k-1
a; = (1)1, ifk<i<r,

where each a; is reduced modulo 2r + 1. Let € = {a+j : j € Z2r41}, where a
represents the cycle a;a; . ..ara;. Then, it is easy to see that Cis a cycle system of
order 2n+1. We define a nesting f of € by f(a+j) = j, for every cyclea+j € C. 0

LEMMA 2.2. [6, Lemma 1] Suppose k = 1 modulo 4 is a prime power. Then
there is a nested 4-cycle decomposition of the complete multipartite graph K(2%).

Proof. As the vertex set for K(2%) we take GF(k) x Z2, and we let the holes
be {y} x Z,,y € GF(k). Let a be a primitive element in GF(k). Write k = 4t +1,
and define 8 = a!. For 0 <i < t— 1, and for any element a € GF(k) x Z2, define
a cycle

C(i,a) = (a + (', 1);a + (a'B,0);a + (a'B,0);a + (B, 1)).

For each cycle C(i,a), define the nested point to be f(C(i,a)) = a. Then, it is not
difficult to verify that € = {C(a,?)} is a 4-cycle decomposition of K(2%¥)and fisa
nesting of €. ]

3. The existence results. First, we consider nested m-cycle systems for odd
values of m. We shall employ the following known class of skew Room frames.

THEOREM 3.1. [3, Theorem 2.2] For alln > 5,n & {6,22, 23,24,26,27,28, 30,
34,38}, there is a skew Room frame of type 2".

LEMMA 3.2, Supposem > 3 is odd and u ¢ {1,2,3,4,6,22,23,24,26,27,28,30,
34,38}. Then there is a nested m-cycle decomposition of K((2m)*).

Proof. This follows from applying the skew Room frame construction to a skew
Room frame of type 2* (which exists by Theorem 3.1). 0

We now have the following immediate consequence.
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THEOREM 3.3. Supposem > 3isodd, n = 2um+1, andu ¢ {2,3,4,6,22,23, 24,
26,27,28,30,34,38}. Then there is a nested m-cycle system of order n.

Proof. If u # 1, fill in the holes with nested m-cycle systems of order 2m + 1
(Lemma 2.1). For u = 1, Lemma 2.1 gives the result immediately. []

More generally, we have the following result for even cycle lengths that are not
a power of two.

THEOREM 3.4. Supposem > 3isodd, n =2um+1,u ¢ {2,3,4,6,22,23, 24, 26,
27,28,30, 34,38}, and i > 0. Then there exists a nested (2'm)-cycle system of order
21+ lym + 1.

Proof. For u = 1, the result is given in Lemma 2.1. For u > 1, proceed as
follows. Apply the multiplication construction to the m-cycle decompositions ob-
tained in Lemma 3.2 using k = 2°. We obtain a nested (2'm)-cycle decomposition
of K((2"*'m)*). Now, fill in the holes with nested (2'm)-cycle systems of order
2*1m + 1 which exist by Lemma 2.1. ]

Finally, we address the question of constructing nested 2'-cycle systems. Our

construction for nested 2'-cycle systems (i > 3) depends on the existence of the

following group-divisible designs.

THEOREM 3.5. [4, Theorem 4.14] Supposeu > 5,u & {7,8,12,14,18,19,23, 24,
33,34}. Then there is a {5,9,13,17,29,49}-GDD having group-type 4*.

The existence of the following nested 4-cycle decompositions will prove useful.

LEMMA 3.6. Suppose u > 5,u ¢ {7,8,12,14,18,19,23,24,33,34}. Then there
is a nested 4-cycle decomposition of K(8*).

Proof. Let (X,§,A) be a {5,9,13,17,29,49}-GDD having group-type 4*. Ap-
ply the GDD construction, giving every point weight 2. For every block A, |A| €
{5,9,13,17,29,49}, so there is a nested 4-cycle decomposition of K (2/4!) by Lemma
2.2. We get a nested 4-cycle decomposition of K(8X1/4). g

LEMMA 3.7. Suppose u > 5,u ¢ {7,8,12,14,18,19,23,24,33,34}, and 7 > 2.
Then there is a nested (2')-cycle decomposition of K((21+1)*).

Proof. Apply the multiplication construction to the m-cycle decompositions
obtained in Lemma 3.6 using k = 2:~2. We obtain a nested 2*!-cycle decomposition

of K((2'+1)%). 0
THEOREM 3.8. Suppose u > 1,u # 2,3,4,7,8,12,14,18, 19, 23,24, 33, or 34,
and i > 2. Then there is a nested (2')-cycle system of order 2'*1u + 1.

Proof. For u = 1, apply Lemma 2.1. For u > 1, we proceed as follows. Con-
struct a nested (2*)-cycle decomposition of K ((2"+!)¥), using Lemma 3.7, and then
fill in the holes with nested (2')-cycle systems of order 2'*! 4+ 1 which exist by
Lemma 2.1. 0

Summarizing the results proved above, we have the following.
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COROLLARY 3.9. Suppose m > 3 is any integer, n = 1 modulo 2m, and n >
70m + 1. Then there is a nested m-cycle system of order n.

4. Further results for small cycle lengths. For some small odd cycle
lengths, it is possible to remove most or all of the 13 possible exceptions given in
Theorem 3.3. For odd m < 15, this was done in [3]. We summarize the results from

[3] below.
m spectrum of nested m-cycle systems
3 = 1 modulo 6
5 n = 1 modulo 10
7 n = 1 modulo 14, except possibly 57 and 85
9 n = 1 modulo 18, except possibly 55
11 n = 1 modulo 22, except possibly 133
13 n = 1 modulo 26, except possibly 105
15 n = 1 modulo 30, except possibly 91
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