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the plan

In this talk, we give a complete answer to a simply stated
combinatorial problem. The solution that we found is quite short,
but perhaps surprising.

The main focus of this elementary talk is not the proof of the main
result, but how we arrived at the proof, including a few wrong
turns along the way.

After carrying out this research, we found that the problem had
been solved previously using somewhat different techniques:

• G. Nivasch, E. Lev. Nonattacking queens on a triangle,
Mathematics Magazine, 2005.

• P. Vaderlind, R.K. Guy, L.C. Larson. Problem 252 in The
Inquisitive Problem Solver, 2002.



the problem
Consider a “triangle” of squares in a grid whose sides are n squares
long, as illustrated by the following diagram, for which n = 7.

← n →

We denote by N(n) the maximum number of dots that can be
placed into the cells of the triangle such that each row, each
column, and each diagonal parallel to the third side of the triangle
contains at most one dot.



n = 1

N(1) = 1



n = 1

N(1) = 1



n = 2

N(2) = 1



n = 2

N(2) = 1



n = 3

N(3) = 2



n = 3

N(3) = 2



n = 4

N(4) = 3



n = 4

N(4) = 3



n = 5

N(5) = 3



n = 5

N(5) = 3



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X X X

X

X

X

X

X X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

XX X X X

X

X

X

X



N(5) 6= 4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

XX

X X X

X

X

X

X

X X X X

X

X

X

X



n = 6

N(6) = 4



n = 6

N(6) = 4



n = 7

N(7) = 5



n = 7

N(7) = 5



N(n) for small values of n

n 1 2 3 4 5 6 7 8 9
N(n) 1 1 2 3 3 4 5 5 6

Conjecture: N(n) = Nf (n), where

Nf (3t) = 2t

Nf (3t + 1) = 2t + 1
Nf (3t + 2) = 2t + 1

Simplification:

Nf (n) =
⌊

2n + 1
3
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a construction meeting the lower bound

• First, we show that N(3t + 1) ≥ 2t + 1:

1. Place a dot in the leftmost cell of the (2t + 1)st row.
2. Place t more dots, each two squares to the right and one

square up from the previous dot.
3. Place a dot in the (t + 2)nd cell from the left in the bottom

row.
4. Place t− 1 more dots, each two squares to the right and one

square up from the previous dot.

• Next, N(3t + 2) ≥ N(3t + 1) ≥ 2t + 1 (add a row of empty
cells).

• Finally, N(3t) ≥ N(3t + 1)− 1 ≥ 2t (delete the bottom row
of cells, which contain at most one dot).
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it seemed like a good idea at the time

• It is obvious that

N(n) ≤ N(n− 1) + 1.

• To prove N(n) = Nf (n), it would suffice to prove that

N(n) ≤ N(n− 3) + 2.

• An inductive proof seems promising, but we couldn’t make the
induction proof work out, despite trying various approaches.

• It is possible to prove some weak partial results such as the
following: If there are two dots in the top three rows, then the
total number of dots is at most N(n− 3) + 2.
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two dots in the top three rows
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a tiny step: a not-very-good upper bound
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A + B + C ≤ n
2

B + C + D ≤ n
2

A + C + D ≤ n
2

⇒ A + B + C + D ≤ 3n
4
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another dead end?

• A more refined analysis yields the result that N(n) < 3n/4 for
all even n > 4 (note that N(4) = 3 = 4× 3/4).

• Decomposing the triangle into 1 + 3 + 5 = 9 smaller triangles
also yielded the same bound of roughly 3n/4.

• This is far from the conjectured bound of (roughly) 2n/3.

• But, if we decompose the triangle into n(n + 1)/2 individual
cells, then we have an integer program which will yield the
exact value of N(n) (in principle, at least).
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integer program formulation
The computation of N(n) can be formulated as an integer
program. Suppose we number the cells as indicated in the
following diagram (where n = 6):

x6,6 x6,5 x6,4 x6,3 x6,2 x6,1

x5,5 x5,4 x5,3 x5,2 x5,1

x4,4 x4,3 x4,2 x4,1

x3,3 x3,2 x3,1

x2,2 x2,1

x1,1

Define xi,j = 1 if the corresponding cell contains a dot; define
xi,j = 0 otherwise.



integer program formulation
The sum of the variables in each row, column, and diagonal is at
most 1. This leads to constraints of the form

i∑
j=1

xi,j ≤ 1, for i = 1, 2, . . . , n

n∑
i=j

xi,j ≤ 1, for j = 1, 2, . . . , n

and
n∑

i=k+1

xi,i−k ≤ 1, for k = 0, 1, . . . , n− 1.

Finally, xi,j ∈ {0, 1} for all i, j .

Objective function: Maximize
∑

xi,j subject to the above
constraints; this maximum is N(n).



linear program formulation
The only change is that the variables can take on any real values in
the closed interval [0, 1]. So the constraints are

i∑
j=1

xi,j ≤ 1, for i = 1, 2, . . . , n

n∑
i=j

xi,j ≤ 1, for j = 1, 2, . . . , n

and
n∑

i=k+1

xi,i−k ≤ 1, for k = 0, 1, . . . , n− 1.

Finally, 0 ≤ xi,j ≤ 1 for all i, j .

Objective function: Maximize
∑

xi,j subject to the above
constraints; call this maximum LP(n).



solution of the linear program for n = 6
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This solution is optimal, so LP(6) = 42
7 .



solution of the linear program for n = 6

0 0 2
7

4
7

1
7 0

2
7 0 3

7
1
7

1
7

5
7 0 0 2

7

0 5
7

2
7

0 2
7

0

This solution is optimal, so LP(6) = 42
7 .



solution of the linear program for n = 6

0 0 2
7

4
7

1
7 0

2
7 0 3

7
1
7

1
7

5
7 0 0 2

7

0 5
7

2
7

0 2
7

0

This solution is optimal, so LP(6) = 42
7 .



solutions to the LP for small values of n

n N(n) LP(n) LP(n)−N(n)

4 3 3 0

5 3 33
5

3
5

6 4 42
7

2
7

7 5 5 0

8 5 55
8

5
8

9 6 6 3
10

3
10

10 7 7 0

11 7 7 7
11

7
11

12 8 8 4
13

4
13



another conjecture

Define

LPf (3t) = 2t +
t

3t + 1
LPf (3t + 1) = 2t + 1

LPf (3t + 2) = 2t + 1 +
2t + 1
3t + 2

LP Conjecture: LP(n) = LPf (n)
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a possible approach to a proof?

• Because N(n) is an integer and N(n) ≤ LP(n), it is clear
that

N(n) ≤ bLP(n)c

• It is also easy to verify that

bLPf (n)c = Nf (n).

• We already showed that N(n) ≥ Nf (n).

• Now, suppose we could prove the LP Conjecture.

• Then it would immediately follow that

N(n) = Nf (n).
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is this going anywhere?

• We have a simple conjectured formula for N(n) along with a
simple construction that achieves the conjectured bound.

• For the LP, we have a more complicated conjectured formula,
and very messy, irregular optimal solutions found by Maple.

• This does not seem to be very promising, but . . .

• “If every instinct you have is wrong, then the opposite would
have to be right.”

Jerry Seinfeld – The Opposite

• Actually, we have one very powerful weapon when dealing
with LPs, namely, duality theory.

http://www.youtube.com/watch?v=0lq8U2pqmWU
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primal and dual LPs, and weak duality

An LP in standard form is specified as:

maximize cT x
subject to Ax ≤ b, x ≥ 0.

This is often called the primal LP.

The corresponding dual LP is specified as:

minimize bT y
subject to AT y ≥ c, y ≥ 0.

weak duality: The objective function value of the dual LP at any
feasible solution is always greater than or equal to the objective
function value of the primal LP at any feasible solution.



primal and dual LPs, and weak duality

An LP in standard form is specified as:

maximize cT x
subject to Ax ≤ b, x ≥ 0.

This is often called the primal LP.
The corresponding dual LP is specified as:

minimize bT y
subject to AT y ≥ c, y ≥ 0.

weak duality: The objective function value of the dual LP at any
feasible solution is always greater than or equal to the objective
function value of the primal LP at any feasible solution.



primal and dual LPs, and weak duality

An LP in standard form is specified as:

maximize cT x
subject to Ax ≤ b, x ≥ 0.

This is often called the primal LP.
The corresponding dual LP is specified as:

minimize bT y
subject to AT y ≥ c, y ≥ 0.

weak duality: The objective function value of the dual LP at any
feasible solution is always greater than or equal to the objective
function value of the primal LP at any feasible solution.



the dual LP
• Label the rows r1, r2, . . . , rn such that ri is the row containing

i squares, and label the columns and diagonals similarly.

• If a cell is in row ri, column cj and diagonal dk, then it is easy
to see that i + j + k = 2n + 1.

• In fact, there is a bijection from the set of n(n + 1)/2 cells to
the set of triples

T = {(i, j, k) : i + j + k = 2n + 1, i, j, k ≥ 1}.

• In the dual LP, the variables are r1, r2, . . . , rn, c1, c2, . . . , cn,
d1, d2, . . . , dn.

• There is a constraint for each cell C. If C is in row ri, column
cj and diagonal dk, then the corresponding constraint is

ri + cj + dk ≥ 1.

• The objective function is to minimize
∑

ri +
∑

cj +
∑

dk.
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seeking divine intervention?



optimal solutions for the dual LP: a miracle occurs
It turns out that there exist optimal solutions for the dual LP that
have a very simple, regular structure. These were found by Maple.

When n = 3t + 1, define

ri = ci = max
{

0,
i− t− 1
3t + 1

}
,

di = max
{

0,
i− t

3t + 1

}
.

When n = 3t + 2, define

ri = ci = di = max
{

0,
i− t− 1
3t + 2

}
.

When n = 3t, define
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a simpler proof strategy

• Suppose we prove that

1. The solutions presented above are feasible for the dual LP, and
2. The value of the objective function (for the dual LP) at these

solutions is LPf (n).

• Then, by weak duality, we would have LP(n) ≤ LPf (n).

• This is sufficient to prove that N(n) = Nf (n).

• Note that, using this approach, we do not have to prove the
LP conjecture (namely, that LP(n) = LPf (n)).
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proof of feasibility

• We present the proof of 1. when n = 3t + 1.

• Consider any cell C, and suppose C is in row ri, column cj

and diagonal dk.

• Recall that i + j + k = 2n + 1.

• We have that

ri + cj + dk ≥
i− t− 1
3t + 1

+
j − t− 1
3t + 1

+
k − t

3t + 1

=
i + j + k − (3t + 2)

3t + 1

=
6t + 3− (3t + 2)

3t + 1
= 1.

• Therefore all constraints are satisfied.
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computing the objective function

• We present the proof of 2. when n = 3t + 1.

• The value of the objective function is

1
3t + 1

(
3t+1∑
i=t+1

(i− t− 1) +
3t+1∑
i=t+1

(i− t− 1) +
3t+1∑
i=t

(i− t)

)

=
1

3t + 1

(
2t(2t + 1)

2
+

2t(2t + 1)
2

+
(2t + 1)(2t + 2)

2

)
=

(2t + 1)(3t + 1)
3t + 1

= 2t + 1
= LPf (3t + 1).
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main result and proof summary

The proofs for n = 3t + 2, 3t are very similar. So we have our main
result:

Theorem N(n) =
⌊

2n+1
3

⌋
for all integers n ≥ 1.

In the end, the proof is quite short and simple.

Proof summary:

1. By a suitable direct construction, prove that N(n) ≥
⌊

2n+1
3

⌋
.

2. Show that the dual LP has a feasible solution whose objective
function value is less than

⌊
2n+1

3

⌋
+ 1.
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the LP conjecture
• The first conjecture we posed was the LP Conjecture,

concerning the optimal solutions to the LP.

• In general, to prove a feasible solution to an LP is optimal, it
is necessary to do the following:

1. Find a feasible solution to the primal LP whose objective
function has value C, say.

2. Find a feasible solution to the dual LP whose objective
function has the same value C.

Then the solution to the LP is optimal (this is often called
strong duality).

• When n ≡ 1 mod 3, our work in fact proves the LP
conjecture.

• However, when n 6≡ 1 mod 3, we do not have solutions to the
primal LP whose objective function value matches the
solutions to the dual LP. Although we are confident that the
LP conjecture is also true for these values of n, proving it
could get messy!
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recapitulation and lessons learned

the opposite: Don’t always trust your instincts. Try different
approaches, even if they seem unpromising.

get your hands dirty: Experimental (i.e., computational) results can
be invaluable in formulating conjectures and also in proving them.

use theory whenever you can: Theory can make your life easier,
because someone has already done the hard work for you. Here,
using the linear programming approach, the problem basically
“solved itself”.

“proofs from the book” are not required: It’s not necessary that
the solution to every problem be a “proof from the book”. Good
research is possible without possessing amazing levels of ingenuity.
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thank you for your attention!


