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Key Predistribution Schemes

• Protocols enabling secure distribution of keys are of
fundamental importance in cryptography.

• These include key agreement, key transport and key
predistribution.

• In this talk, we focus on key predistribution schemes (KPS),
where a trusted authority (the TA) distributes secret
information securely to the network users before the network
is deployed.

• The keys are symmetric pairwise keys for use in secret-key
crypto systems (e.g., AES).

• As an example, the nodes in a wireless sensor network may
be preloaded with keys or keying information, and then nodes
may be scattered from an airplane (random deployment).



Attack Models and Adversarial Goals for KPS

• We consider a network of n nodes which do not necessarily
trust each other.

• An adversary may corrupt a subset of the nodes, and obtain
all their secret information.

• We sometimes consider adversaries who corrupt up to κ
nodes, where κ is a security parameter.

• The adversary’s goal is to determine the secret key
corresponding to a pair of uncorrupted nodes.

• We first describe the Blom KPS , which is a KPS that is
unconditionally secure (AKA information-theoretically
secure) against adversaries of this type.

• This means that the security can be proven mathematically
without making any computational assumptions.



Two Trivial Schemes

1. If every node is given the same secret master key, then
memory costs are low. However, this situation is unsuitable
because the compromise of a single node would render the
network completely insecure.

2. For every pair of nodes, there could be a secret pairwise key
given only to these two nodes. This scheme would have
optimal resilience to node compromise, but memory costs
would be prohibitively expensive for large networks because
every node would have to store n− 1 keys, where n is the
number of nodes in the network.



The Blom KPS (1982)

Here is the Blom scheme for κ = 1. For each node U, a value
rU ∈ Zp is made public (where p ≥ n is prime). The values rU are
distinct elements of Zp.

Protocol : Blom’s key distribution scheme (κ = 1)

1. The TA chooses three random elements a, b, c ∈ Zp (not
necessarily distinct), and forms the polynomial

f(x, y) = a+ b(x+ y) + cxy mod p.

2. For each node U, the TA computes the polynomial

gU (x) = f(x, rU ) mod p = aU + bUx

and transmits (aU , bU ) to U over a secure channel.



The Blom PKS (cont.)

• The key for U and V is

KU,V = KV ,U = f(rU , rV ),

where U computes KU,V = gU (rV ) and V computes
KU,V = gV (rU ).

• We have:

aU = a+ b rU mod p and

bU = b+ c rU mod p, so

gU (rV ) = a+ b rU + (b+ c rU )rV

= a+ b(rU + rV ) + c rUrV

= f(rU , rV ) mod p.



A Toy Example

• Suppose p = 17.

• Suppose there are three nodes: U, V and W, and their public
values are rU = 12, rV = 7 and rW = 1.

• Suppose the TA chooses a = 8, b = 7 and c = 2, so the
polynomial f is

f(x, y) = 8 + 7(x+ y) + 2xy.

• The g polynomials are as follows:

gU (x) = 7 + 14x

gV (x) = 6 + 4x

gW (x) = 15 + 9x.



A Toy Example

• The three keys are

KU,V = 3

KU,W = 4

KV ,W = 10.

• U would compute KU,V as

gU (rV ) = 7 + 14× 7 mod 17 = 3.

• V would compute KU,V as

gV (rU ) = 6 + 4× 12 mod 17 = 3.



Unconditional Security of the Blom Scheme (κ = 1)

• We show that no individual node, say W, can determine any
information about a pairwise key for two other nodes, say
KU,V .

• What information does W possess?

• W knows the values

aW = a+ b rW mod p

and
bW = b+ c rW mod p.

• The key that W is trying to compute is

KU,V = a+ b(rU + rV ) + c rUrV mod p.

• The values rU , rV and rW are public, but a, b and c are
unknown.



Security of the Blom Scheme (cont.)

• We will show that the information known by W is consistent
with any possible value K∗ ∈ Zp of the key KU,V .

• Consider the following matrix equation (in Zp): 1 rU + rV rUrV
1 rW 0
0 1 rW

 a
b
c

 =

 K∗

aW
bW

 .

• The determinant of the coefficient matrix is

rW
2 + rUrV − (rU + rV )rW = (rW − rU )(rW − rV ),

where all arithmetic is done in Zp.

• Since rW 6= rU and rW 6= rV , it follows that the coefficient
matrix has non-zero determinant, and hence the matrix
equation has a unique solution for a, b and c.



Security of the Blom Scheme (cont.)

• However, a coalition of two nodes, say {W,X}, will be able
to compute any key KU,V where {W,X} ∩ {U, V } = ∅.

• W and X together have the following information:

aW = a+ b rW

bW = b+ c rW

aX = a+ b rX

bX = b+ c rX ,

where a, b and c are unknowns.

• W and X together have four equations in three unknowns,
and they can easily compute a unique solution for a, b and c.

• Once they know a, b and c, they can form the polynomial
f(x, y) and compute any key they wish.



The Blom Scheme for arbitrary κ

The general version of the the Blom Scheme uses a symmetric
bivariate polynomial of degree k in each variable x and y.

The Blom Scheme with security parameter κ satisfies the following
security properties:

1. no set of κ nodes, say W1, . . . ,Wκ can determine any
information about a pairwise key for two other nodes, say
KU,V

2. any set of κ+ 1 nodes, say W1, . . . ,Wκ+1, can break the
scheme



Fundamental Problems for WSNs

Eschenauer and Gligor (2002) introduced the following problems:

Key predistribution

We do not want to use a single key across the whole
network due to the possibility of node compromise.
So each node will receive a moderate sized key ring.

Shared-key discovery

Two nodes can communicate directly only if they are
in close physical proximity and they have a common
key. We need an efficient method to determine if two
nearby nodes share a common key.

Path-key establishment

Nodes that cannot communicate directly should be
able to communicate via a multi-hop path (preferably,
a two-hop path). We need an efficient method for
two nodes to determine a secure multi-hop path.



Shared-key Discovery

B has keys k2, k4, k6
A has keys k1, k3, k5

A B



Path-key Establishment

C

D

E

B has keys k2, k4, k6
A has keys k1, k3, k5

D has keys k2, k6, k7
E has keys k3, k6, k7

A B

C has keys k1, k3, k7



Path-key Establishment (cont.)
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B has keys k2, k4, k6
A has keys k1, k3, k5

D has keys k2, k6, k7
E has keys k3, k6, k7

k6
k3

A B

C has keys k1, k3, k7



The Eschenauer-Gligor Scheme

• In 2002, Eschenauer and Gligor proposed a randomized
approach to key predistribution for sensor networks.

• For a suitable value of k, every node is assigned a random
k-subset of keys chosen from a given pool of v secret keys.

• Suppose that nodes Ni and Nj have exactly ` ≥ 1 common
keys, say keya1 , . . . ,keya` , where a1 < a2 < · · · < a` and
i < j.

• Such a pair of nodes is termed an `-link.

• Then Ni and Nj can each compute the same secret key,

Ki,j = h(keya1 ‖ . . . ‖ keya` ‖ i ‖ j),

using a public key derivation function h.

• h could be constructed from a cryptographic hash function.



Attack Model: Random Node Compromise

• Suppose an adversary compromises a fixed number s of
randomly chosen nodes in the network and extracts the keys
stored in them.

• Any links involving the compromised nodes are broken.

• However, other links that do not directly involve the
compromised nodes may also be broken.

• A link formed by two nodes Ni and Nj, will be broken when a
compromised node Nk 6∈ {Ni,Nj} contains all the keys held
by Ni and Nj, i.e., when Ni ∩Nj ⊆ Nk.

• If s nodes, say Nk1 , . . . ,Nks , are compromised, then a link
Ni,Nj will be broken whenever

Ni ∩Nj ⊆
s⋃

h=1

Nkh
.



Three Important Metrics

Storage requirements

The number of keys stored in each node, which is
denoted by k, should be “small” (e.g., at most 100).

Network connectivity

The probability that a randomly chosen pair of nodes
can compute a common key is denoted by Pr1. Pr1
should be “large” (e.g., at least 0.5).

Network resilience

The probability that a random link is broken by the
compromise of s randomly chosen nodes not in the
link is denoted by fails. We want fails to be small:
high resilience corresponds to a small value for fails.
In this talk we mostly consider fail1.



Deterministic Key Predistribution Schemes

• The Eschenauer-Gligor schemes are randomized schemes, in
that the keys assigned to each node are chosen randomly.

• In 2004, deterministic KPS were proposed independently by
Çamtepe and Yener; by Lee and Stinson; and by Wei and Wu.

• In a deterministic scheme, the assignment of keys to nodes is
done in a deterministic fashion.

• A suitable set system (i.e., a design) is chosen, and each block
is assigned to a node in the WSN (the design and the
correspondence of nodes to blocks is public).

• The points in a block are the indices (i.e., the identifiers) of
the keys given to the corresponding node.



Combinatorial Set Systems (aka Designs)

• A set system is a pair (X,A), where the elements of X are
called points and A is a set of subsets of X, called blocks.

• As stated above, we pair up the blocks of the set system with
the nodes in the WSN, and the points in the block are the key
identifiers of the keys given to the corresponding node.

• The degree of a point x ∈ X is the number of blocks
containing x

• (X,A) is regular (of degree r) if all points have the same
degree, r; then each key occurs in r nodes in the WSN.

• If all blocks have size k, then (X,A) is said to be uniform (of
rank k); then each node is assigned k keys.



Toy Example

We list the blocks in a projective plane of order 2 and the keys in
the corresponding KPS. This design has seven points, seven
blocks, is regular of degree 3 and uniform of rank 3. Further, every
pair of points occurs in a unique block and every pair of blocks
intersect in a unique point.

node block key assignment

N1 {1, 2, 4} key1,key2,key4

N2 {2, 3, 5} key2,key3,key5

N3 {3, 4, 6} key3,key4,key6

N4 {4, 5, 7} key4,key5,key7

N5 {1, 5, 6} key1,key5,key6

N6 {2, 6, 7} key2,key6,key7

N7 {1, 3, 7} key1,key3,key7

The values of keys are secret, but the lists of key identifiers (the
blocks) are public. It is easy to see that Pr1 = 1 and fail1 = 1/5.



Possible Advantages of Deterministic KPS

Deterministic KPS have several possible advantages:

Simpler set-up

No random number generator is required for key
assignment; simple formulas dictate which keys are
given to which nodes.

No need to verify expected properties of the WSN

Randomized KPS have desirable properties with high
probability, but there are no guarantees, e.g., due to
a “bad” choice of random numbers.

Simpler shared-key discovery and path-key establishment

The complexity of these algorithms can be
significantly reduced, sometimes to O(1) time, (as
compared to O(k) or O(k log k) time required in the
randomized case).



Transversal Designs

• Lee and Stinson (2005) proposed using transversal designs to
construct KPS.

• Let n, k and t be positive integers.

• A transversal design TD(t, k, n) is a triple (X,H,A), where
X is a finite set of cardinality kn, H is a partition of X into k
parts (called groups) of size n, and A is a set of k-subsets of
X (called blocks), which satisfy the following properties:

1. |H ∩A| = 1 for every H ∈ H and every A ∈ A, and
2. every t elements of X from different groups occurs in exactly

one block in A.

• Transversal designs are equivalent to orthogonal arrays, which
have been extensively studied in the setting of statistical
design of experiments.



Some Blocks in a Transversal Design (Diagram)

Groups are represented as vertical blue lines, and blocks are
represented as red lines. Each block is a transversal of the groups.



An Easy Construction for Transversal Designs

• Suppose that p is prime and t ≤ k ≤ p.

• A TD(t, k, p) is constructed by evaluating the pt polynomials
of degree at most t− 1 over Zp at k distinct points of Zp.

• Define
X = {0, . . . , k − 1} × Zp.

• For every c = (c0, . . . , ct−1) ∈ (Zp)t, define a block

Ac =

{(
x,

t−1∑
i=0

cix
i

)
: 0 ≤ x ≤ k − 1

}
.

• Let
A = {Ac : c ∈ (Zp)t}.

• In the case t = 2, the resulting KPS are called linear KPS.



Properties of the Linear KPS

• A TD(2, k, n) gives rise to a KPS where

Pr1 =
k

n+ 1
and fail1 =

n− 2

n2 − 2
.

• The Eschenauer-Gligor scheme has

Pr1 ≈
k2

v
and fail1 ≈

k

v

when v � k.

• Since v = nk in a TD(2, k, n), the two schemes have very
similar properties.



ID-based One-way Function KPS

• We now consider ID-based One-way Function KPS , which
were introduced by Lee and Stinson (2005).

• Suppose every pairwise key Lu,v is computed as

Lu,v = Lv,u = h(R{u,v} ‖ ID(u) ‖ ID(v)),

where
• for every u ∈ U , ID(u) denotes public identifying information

for node u, and
• u < v (this requirement ensures that Lu,v = Lv,u).

• Each of nodes u and v must be given the value of either
R{u,v} or Lu,v.

• If node u is given R{u,v} and node v is given Lu,v, then the
value R{u,v} can be “re-used” for some other key Lu,w, thus
reducing the storage requirement of node u.



Edge-decompositions into Stars

• Suppose that G is the desired communication graph of the
KPS.

• Suppose we find an edge-decomposition of G into stars (i.e.,
complete bipartite graphs K1,m (m is not fixed).

• There is a secret random value associated with the centre of
each star, which allows the centre to compute m different
keys.

• The leaves get the actual key values.

• The scheme will be secure against coalitions of arbitrary size
provided the key derivation function h is “secure”.

• Security can be proven formally in the random oracle model.



Example: a Communication Graph
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Example (cont.): An Edge-decomposition into Six Stars
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The Resulting KPS

In the resulting KPS, each node stores one secret value
(corresponding to the star for which it is the centre) and two keys
(corresponding to the two stars for which it is a leaf).
The twelve keys are:

L1,2 = h(R1 ‖ ID(1) ‖ ID(2)) L1,3 = h(R1 ‖ ID(1) ‖ ID(3))

L2,3 = h(R2 ‖ ID(2) ‖ ID(3)) L2,4 = h(R2 ‖ ID(2) ‖ ID(4))

L3,4 = h(R3 ‖ ID(3) ‖ ID(4)) L3,5 = h(R3 ‖ ID(3) ‖ ID(5))

L4,5 = h(R4 ‖ ID(4) ‖ ID(5)) L4,6 = h(R4 ‖ ID(4) ‖ ID(6))

L5,6 = h(R5 ‖ ID(5) ‖ ID(6)) L5,1 = h(R5 ‖ ID(1) ‖ ID(5))

L6,1 = h(R6 ‖ ID(1) ‖ ID(6)) L6,2 = h(R6 ‖ ID(2) ‖ ID(6))

The nodes store the following information:

1 : R1, L5,1, L6,1 2 : R2, L6,2, L1,2 3 : R3, L1,3, L2,3

4 : R4, L2,4, L3,4 5 : R5, L3,5, L4,5 6 : R6, L4,6, L5,6



Storage Requirements

• The storage s(u) required by a node u is equal to the
number of stars that contain the node u.

• The total storage is defined to be

S =
∑
u∈V

s(u).

Theorem (Paterson and Stinson, 2014)

The optimal total storage for an ID-based One-way Function KPS
realizing a communication graph G = (V,E) is

S∗ = |V |+ |E| − α(G),

where α(G) denotes the size of a maximum independent set of
vertices in G.

The above theorem shows that computing S∗ is NP-hard.



Constructing Schemes with Optimal Storage Requirements

• Suppose we can find an independent set of size α(G), say
W ⊆ V .

• We use a greedy algorithm to find the star decomposition.

• For every vertex u ∈ V \W , choose a star with centre u using
all the edges incident with v that have not previously
been selected.

• This process will use up all the edges, since every edge is
incident with at least one vertex in V \W .

• This gives a KPS with total storage equal to |V |+ |E|−α(G).



Example
• In the example graph, |V | = 6, |E| = 12 and α(G) = 2, so

the optimal total storage is 6 + 12− 2 = 16.
• The previous decomposition yielded total storage equal to 18.
• {3, 6} is an independent set of size 2.
• We greedily construct stars with centres 1, 2, 4 and 5:

• 12, 13, 15, 16
• 23, 24, 26
• 43, 45, 46
• 53, 56
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Maximum Storage

• The maximum storage is defined to be

Smax = max{s(u) : u ∈ V }.

Theorem (Paterson and Stinson, 2014)

The optimal maximum storage for a scheme realizing a d-regular
communication graph G = (V,E) is

S∗max =

⌊
d+ 3

2

⌋
.



Eulerian Circuits and Optimal Maximum Storage for
Regular Graphs

• Lee and Stinson (2005) used Eulerian circuits to construct
KPS with optimal maximum storage in the case of regular
graphs of even degree.

• The upper bound on maximum storage is S∗max ≤ (d+ 2)/2
when d is even.

• Orient the edges in E so a (directed) Eulerian circuit is
obtained.

• For every vertex u, there are d/2 edges directed into u and
d/2 edges directed away from u.

• The edges directed into vertex u form a star K1,d/2.

• In the resulting star decomposition, every vertex is in d/2 + 1
stars.



Example

1 2

3

45

6

In the example graph, it is easily seen that 2165315426432 is an
Eulerian circuit that gives rise to the first star decomposition. The
resulting KPS has optimal maximum storage equal to 3.
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Optimal Maximum Storage for General Graphs

• Paterson and Stinson (2014) have shown how the optimal
maximum storage can be computed in polynomial time for
arbitrary communication graphs G.

• Computing optimal maximum storage is closely related to the
well-studied minimum maximum outdegree problem.

• This problem requires directing the edges of G to minimize
the maximum outdegree of a vertex of the resulting directed
graph, which is denoted by MMO(G).

• It is easy to see that

MMO(G) ≤ S∗max(G) ≤ MMO(G) + 1.

• So there are two possible values for S∗max(G), and it turns
out that we can determine the correct value in polynomial
time!
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Thank You For Your Attention!


