Block-avoiding sequencings of points in Steiner triple systems

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

50th Southeastern Conference Boca Raton, March 4–8, 2019

This is joint work with Don Kreher

Definitions

- A Steiner triple system of order v, or STS(v), is a pair (X, B), where X is a set of v points and B is a set of 3-subsets of X (called blocks), such that every pair of points occur in exactly one block.
- An STS(v) contains exactly v(v-1)/6 blocks, and an STS(v) exists if and only if $v \equiv 1, 3 \mod 6$.
- For an STS(v), (X, B), we ask if there is a permutation (or sequencing) of the points in X so that no three consecutive points in the sequencing comprise a block in B.
- That is, can we find a sequencing $[x_1 \ x_2 \ \cdots \ x_v]$ of X such that $\{x_i, x_{i+1}, x_{i+2}\} \notin \mathcal{B}$ for all $i, 1 \le i \le v 2$?
- Such a sequencing will be termed a 3-good sequencing for the given STS(v).

Definitions (cont.)

- More generally, we could ask if there is a sequencing of the points such that no ℓ consecutive points in the sequencing contain a block in B.
- Such a sequencing will be termed ℓ -good for the given STS(v).
- As an example, consider the STS(7), $(X,\mathcal{B}),$ where $X=\mathbb{Z}_7$ and

 $\mathcal{B} = \{013, 124, 235, 346, 450, 451, 562\}.$

The sequencing

 $[0\ 1\ 2\ 3\ 4\ 5\ 6]$

is easily seen to be 3-good.

- However, it is not 4-good, as the block 013 is contained in the first four points of the sequencing.
- Notation: For any two points $x, y \in X$, define third(x, y) = z if and only if $\{x, y, z\} \in \mathcal{B}$.

Main Results

- We have proven that
 - 1. every STS(v) with v > 3 has a 3-good sequencing, and
 - 2. every STS(v) with v > 72 has a 4-good sequencing.
- In this talk, we will give two proofs of 1. We also sketch a proof of 2, which is considerably more complicated.
- We conjecture that, for any integer $\ell \geq 3$, there is an integer $n(\ell)$ such that any STS(v) with $v > n(\ell)$ has an ℓ -good sequencing.

Update: I think I can now prove this conjecture.

A Counting Argument

- Let (X, \mathcal{B}) be an STS(v) on points $X = \{1, \dots, v\}$, where v > 3.
- For a sequencing $\pi = [x_1 \ x_2 \ \cdots \ x_v]$ of X, and for any i, $1 \le i \le v-2$, define π to be *i*-forbidden if

 $\{x_i, x_{i+1}, x_{i+2}\} \in \mathcal{B}.$

- Let *forbidden*(*i*) denote the set of *i*-forbidden sequencings.
- Also, define a sequencing to be **forbidden** if it is *i*-forbidden for at least one value of *i* and let *forbidden* denote the set of forbidden sequencings.
- Clearly, a sequencing is 3-good if and only if it is not forbidden.

A Counting Argument (cont.)

• Clearly,

forbidden =
$$\bigcup_{i=1}^{v-2}$$
 forbidden(i).

• For any two points, x_i and x_{i+1} ,

 $\{x_i, x_{i+1}, x_{i+2}\} \in \mathcal{B} \Leftrightarrow x_{i+2} = \mathsf{third}(x_i, x_{i+1}).$

- Therefore, for any i, it holds that |forbidden(i)| = v!/(v-2).
- From the union bound,

$$|\textit{forbidden}| \leq \sum_{i=1}^{v-2} |\textit{forbidden}(i)| = (v-2) \times \frac{v!}{(v-2)} = v!$$

- Equality would be obtained if and only if the sets *forbidden*(*i*), $1 \le i \le v 2$, are pairwise disjoint.
- But this is impossible (consider any two intersecting blocks).

Greedy Algorithm

- We want to construct a 3-good sequencing $[x_1 \ x_2 \ \cdots \ x_v]$.
- Start by choosing any two distinct values for x_1 and x_2 .
- Then consider any i such that $3 \le i \le v 1$.
- Clearly we must have $x_i \notin \{x_1, \ldots, x_{i-1}\}$.
- Also, $x_i \neq \text{third}(x_{i-2}, x_{i-1})$.
- So there are at most *i* values for *x_i* that are ruled out.
- Since i ≤ v − 1, there is at least one value for x_i that does not violate the required conditions.
- So we can choose $x_1, x_2, \ldots, x_{v-1}$ so that $[x_1 \ x_2 \ \cdots \ x_{v-1}]$ is a partial 3-good sequencing.

Greedy Algorithm (cont.)

- After choosing x₁, x₂,..., x_{v-1} as described above, there is only one unused value remaining for x_v.
- But this might not result in a 3-good sequencing, if it happens that {x_{v-2}, x_{v-1}, x_v} ∈ B.
- In this case, consider swapping x_1 and x_v .
- $x_1 \neq third(x_{v-2}, x_{v-1})$, so the last three points are now OK.
- But if we are unlucky, $x_v = third(x_2, x_3)$.
- Suppose we had previously chosen x_5 such that $\{x_2, x_3, x_5\} \in \mathcal{B}$, i.e., $x_5 = third(x_2, x_3)$.
- It is easy to check that this is an allowable choice for x_5 , because $x_1 \neq third(x_2, x_3)$ and $x_4 \neq third(x_2, x_3)$.
- If $x_5 = third(x_2, x_3)$, then $x_v \neq third(x_2, x_3)$ provided v > 5.

Greedy Algorithm (summary)

- 1. Choose a block $\{b, c, e\} \in \mathcal{B}$, let $a \neq b, c, e$ and let $d \neq a, b, c, e$.
- 2. Define $x_1 = a$, $x_2 = b$, $x_3 = c$, $x_4 = d$ and $x_5 = e$.
- 3. For i = 6 to v 1 define x_i to be any element of X that is distinct from the values x_1, \ldots, x_{i-1} and third (x_{i-2}, x_{i-1}) .
- 4. Define x_v to be the unique value that is distinct from x_1, \ldots, x_{v-1} .
- 5. If $\{x_{v-2}, x_{v-1}, x_v\} \in \mathcal{B}$ then swap x_1 and x_v .
- 6. Return $([x_1 \ x_2 \ \cdots \ x_v]).$

Greedy Algorithm for 4-good Sequencings

- Now we consider how to construct a 4-good sequencing $[x_1 \ x_2 \ \cdots \ x_v].$
- When we choose a value for x_i , it must be distinct from x_1, \ldots, x_{i-1} , of course.
- It is also required that

 $x_i \neq third(x_{i-3}, x_{i-2}), third(x_{i-3}, x_{i-1}) \text{ or } third(x_{i-2}, x_{i-1}).$

- Thus we can define $x_1, x_2, \ldots, x_{v-3}$ in such a way that $[x_1 \ x_2 \ \cdots \ x_{v-3}]$ is a partial 4-good sequencing.
- Denote the three remaining values by $\alpha_1, \alpha_2, \alpha_3$.

Greedy Algorithm for 4-good Sequencings (cont.)

• By relabelling $\alpha_1, \alpha_2, \alpha_3$ if necessary, it is possible to ensure that the only possible blocks contained in four consecutive points in

 $[x_1 x_2 \cdots x_{v-4} x_{v-3} \alpha_1 \alpha_2 \alpha_3]$

involve α_1 .

• There are in fact seven possible 3-subsets contained in four consecutive points of the above sequencing that could conceivably be a block in the STS:

$$\begin{array}{ll} \{x_{v-5}, x_{v-4}, \alpha_1\} & \{x_{v-5}, x_{v-3}, \alpha_1\} & \{x_{v-4}, x_{v-3}, \alpha_1\} \\ \{x_{v-4}, \alpha_1, \alpha_2\} & \{x_{v-3}, \alpha_1, \alpha_2\} & \{x_{v-3}, \alpha_1, \alpha_3\} \\ & \quad \{\alpha_1, \alpha_2, \alpha_3\} \end{array}$$

- There are therefore at most seven "bad" choices for x_{v-2} , and hence one of x_1, \ldots, x_8 must be a good choice.
- Suppose we swap α_1 with a good x_i , where $1 \le i \le 8$, which we denote by x_{κ} .

Greedy Algorithm for 4-good Sequencings (cont.)

- After we replace x_κ by α₁, we need to make sure that there is no block contained in any four consecutive points in x₁, x₂, x₃,..., x₁₁.
- Thus, we require that

$$\alpha_1 \notin Z = \{ third(x_i, x_j) : 1 \le i < j \le 11, |i - j| \le 3 \}.$$

• There are at most 10 + 9 + 8 = 27 points in the set Z:

$$third(x_1, x_2), \dots, third(x_{10}, x_{11}),$$

 $third(x_1, x_3), \dots, third(x_9, x_{11}),$
 $third(x_1, x_4), \dots, third(x_8, x_{11})$

- Suppose we ensure that all elements in Z have been used as an x_i-value with i ≤ v − 6.
- Then $\alpha_1 \notin Z$ and we can swap it in for x_{κ} .

Greedy Algorithm for 4-good Sequencings (cont.)

- It turns out that we can fit all the elements of Z into $\{x_1,\ldots,x_{66}\}$ without any problems arising.
- Define

$$Y = Z \setminus \{x_1, \ldots, x_{11}\}.$$

and denote the points in Y as y_1, \ldots, y_m , where $m \leq 27$.

• We can define $\{x_{12}, \ldots, x_{2m+12}\}$ so the following holds:

x_{12}	x_{13}		y_1	x_{15}	y_2	x_1	17	y_3	x_{19}	• • •
x_{2m+}	-7	y_n	n-2	x_{2m+9}	y_{m} -	-1	x_2	m + 11	y_m	

 These 2m + 12 ≤ 66 points should not overlap the last six points, so we require v ≥ 72.

Motivation and Related Problems

- A sequenceable STS(v) is an STS(v) in which the points can be ordered (i.e., sequenced) so that no t consecutive points can be partitioned into t/3 blocks, for any t ≡ 0 mod 3, t < v.
- Brian Alspach gave a talk entitled Strongly Sequenceable Groups at the 2018 Kliakhandler Conference held at MTU.
- In this talk, among other things, the notion of sequencing diffuse posets was introduced and the following research problem was posed:

"Given a triple system of order n with $\lambda = 1$, define a poset P by letting its elements be the triples and any union of disjoint triples. This poset is not diffuse in general, but it is certainly possible that P is sequenceable."

Motivation and Related Problems (cont.)

- One possible relaxation of the definition of sequenceable STS(v) would be to require a sequencing of the points so that no t consecutive points can be partitioned into t/3 blocks, for any $t \equiv 0 \mod 3$ such that $t \leq w$, where w < v is some specified integer.
- Such an STS(v) could be termed *w*-semi-sequenceable.
- A 3-semi-sequenceable STS(v) has a sequencing of the points so that no three consecutive points form a block. This is identical to a 3-good sequencing.
- There is a connection between *w*-semi-sequenceable STS(*v*) and STS(*v*) having ℓ-good sequencings.

Theorem

Theorem 1 An STS(v) having a (2u + 1)-good sequencing is 3u-semi-sequenceable.

Proof.

Suppose there are 3u consecutive points, say x_1, \ldots, x_{3u} , in a sequencing π , that can be partitioned into u blocks of the STS(v), say B_1, \ldots, B_u . For $1 \le j \le u$, let

 $m_{lo}(j) = \min\{i : x_i \in B_j\}$ and $m_{hi}(j) = \max\{i : x_i \in B_j\}.$

Clearly there is a block B_j such that $m_{lo}(j) \ge u$. It also holds that $m_{hi}(j) \le 3u$. Therefore $B_j \subseteq \{x_u, \ldots, x_{3u}\}$, which means that the sequencing π is not (2u + 1)-good.

Thank You For Your Attention!

