# Block-avoiding sequencings of points in Steiner triple systems 

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

# 50th Southeastern Conference 

Boca Raton, March 4-8, 2019

This is joint work with Don Kreher

## Definitions

- A Steiner triple system of order $v$, or $\operatorname{STS}(v)$, is a pair $(X, \mathcal{B})$, where $X$ is a set of $v$ points and $\mathcal{B}$ is a set of 3-subsets of $X$ (called blocks), such that every pair of points occur in exactly one block.
- An STS $(v)$ contains exactly $v(v-1) / 6$ blocks, and an STS $(v)$ exists if and only if $v \equiv 1,3 \bmod 6$.
- For an $\operatorname{STS}(v),(X, \mathcal{B})$, we ask if there is a permutation (or sequencing) of the points in $X$ so that no three consecutive points in the sequencing comprise a block in $\mathcal{B}$.
- That is, can we find a sequencing $\left[x_{1} x_{2} \cdots x_{v}\right]$ of $X$ such that $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \notin \mathcal{B}$ for all $i, 1 \leq i \leq v-2$ ?
- Such a sequencing will be termed a 3-good sequencing for the given $\mathrm{STS}(v)$.


## Definitions (cont.)

- More generally, we could ask if there is a sequencing of the points such that no $\ell$ consecutive points in the sequencing contain a block in $\mathcal{B}$.
- Such a sequencing will be termed $\ell$-good for the given STS (v).
- As an example, consider the $\operatorname{STS}(7),(X, \mathcal{B})$, where $X=\mathbb{Z}_{7}$ and

$$
\mathcal{B}=\{013,124,235,346,450,451,562\} .
$$

- The sequencing

$$
\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}\right]
$$

is easily seen to be 3 -good.

- However, it is not 4 -good, as the block 013 is contained in the first four points of the sequencing.
- Notation: For any two points $x, y \in X$, define $\operatorname{third}(x, y)=z$ if and only if $\{x, y, z\} \in \mathcal{B}$.


## Main Results

- We have proven that

1. every $\operatorname{STS}(v)$ with $v>3$ has a 3 -good sequencing, and
2. every $\operatorname{STS}(v)$ with $v>72$ has a 4 -good sequencing.

- In this talk, we will give two proofs of 1 . We also sketch a proof of 2 , which is considerably more complicated.
- We conjecture that, for any integer $\ell \geq 3$, there is an integer $n(\ell)$ such that any $\operatorname{STS}(v)$ with $v>n(\ell)$ has an $\ell$-good sequencing.
Update: I think I can now prove this conjecture.


## A Counting Argument

- Let $(X, \mathcal{B})$ be an $\operatorname{STS}(v)$ on points $X=\{1, \ldots, v\}$, where $v>3$.
- For a sequencing $\pi=\left[x_{1} x_{2} \cdots x_{v}\right]$ of $X$, and for any $i$, $1 \leq i \leq v-2$, define $\pi$ to be $i$-forbidden if

$$
\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \in \mathcal{B}
$$

- Let forbidden $(i)$ denote the set of $i$-forbidden sequencings.
- Also, define a sequencing to be forbidden if it is $i$-forbidden for at least one value of $i$ and let forbidden denote the set of forbidden sequencings.
- Clearly, a sequencing is 3-good if and only if it is not forbidden.


## A Counting Argument (cont.)

- Clearly,

$$
\text { forbidden }=\bigcup_{i=1}^{v-2} \text { forbidden }(i) \text {. }
$$

- For any two points, $x_{i}$ and $x_{i+1}$,

$$
\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \in \mathcal{B} \Leftrightarrow x_{i+2}=\operatorname{third}\left(x_{i}, x_{i+1}\right)
$$

- Therefore, for any $i$, it holds that $\mid$ forbidden $(i) \mid=v!/(v-2)$.
- From the union bound,

$$
\mid \text { forbidden }\left|\leq \sum_{i=1}^{v-2}\right| \text { forbidden }(i) \left\lvert\,=(v-2) \times \frac{v!}{(v-2)}=v!\right.
$$

- Equality would be obtained if and only if the sets forbidden $(i)$, $1 \leq i \leq v-2$, are pairwise disjoint.
- But this is impossible (consider any two intersecting blocks).


## Greedy Algorithm

- We want to construct a 3 -good sequencing $\left[x_{1} x_{2} \cdots x_{v}\right]$.
- Start by choosing any two distinct values for $x_{1}$ and $x_{2}$.
- Then consider any $i$ such that $3 \leq i \leq v-1$.
- Clearly we must have $x_{i} \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$.
- Also, $x_{i} \neq \operatorname{third}\left(x_{i-2}, x_{i-1}\right)$.
- So there are at most $i$ values for $x_{i}$ that are ruled out.
- Since $i \leq v-1$, there is at least one value for $x_{i}$ that does not violate the required conditions.
- So we can choose $x_{1}, x_{2}, \ldots, x_{v-1}$ so that $\left[x_{1} x_{2} \cdots x_{v-1}\right]$ is a partial 3 -good sequencing.


## Greedy Algorithm (cont.)

- After choosing $x_{1}, x_{2}, \ldots, x_{v-1}$ as described above, there is only one unused value remaining for $x_{v}$.
- But this might not result in a 3 -good sequencing, if it happens that $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$.
- In this case, consider swapping $x_{1}$ and $x_{v}$.
- $x_{1} \neq \operatorname{third}\left(x_{v-2}, x_{v-1}\right)$, so the last three points are now OK.
- But if we are unlucky, $x_{v}=\operatorname{third}\left(x_{2}, x_{3}\right)$.
- Suppose we had previously chosen $x_{5}$ such that $\left\{x_{2}, x_{3}, x_{5}\right\} \in \mathcal{B}$, i.e., $x_{5}=\operatorname{third}\left(x_{2}, x_{3}\right)$.
- It is easy to check that this is an allowable choice for $x_{5}$, because $x_{1} \neq \operatorname{third}\left(x_{2}, x_{3}\right)$ and $x_{4} \neq \operatorname{third}\left(x_{2}, x_{3}\right)$.
- If $x_{5}=\operatorname{third}\left(x_{2}, x_{3}\right)$, then $x_{v} \neq \operatorname{third}\left(x_{2}, x_{3}\right)$ provided $v>5$.


## Greedy Algorithm (summary)

1. Choose a block $\{b, c, e\} \in \mathcal{B}$, let $a \neq b, c, e$ and let $d \neq a, b, c, e$.
2. Define $x_{1}=a, x_{2}=b, x_{3}=c, x_{4}=d$ and $x_{5}=e$.
3. For $i=6$ to $v-1$ define $x_{i}$ to be any element of $X$ that is distinct from the values $x_{1}, \ldots, x_{i-1}$ and third $\left(x_{i-2}, x_{i-1}\right)$.
4. Define $x_{v}$ to be the unique value that is distinct from $x_{1}, \ldots, x_{v-1}$.
5. If $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$ then swap $x_{1}$ and $x_{v}$.
6. Return $\left(\left[x_{1} x_{2} \cdots x_{v}\right]\right)$.

## Greedy Algorithm for 4-good Sequencings

- Now we consider how to construct a 4-good sequencing $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]$.
- When we choose a value for $x_{i}$, it must be distinct from $x_{1}, \ldots, x_{i-1}$, of course.
- It is also required that
$x_{i} \neq \operatorname{third}\left(x_{i-3}, x_{i-2}\right), \operatorname{third}\left(x_{i-3}, x_{i-1}\right)$ or third $\left(x_{i-2}, x_{i-1}\right)$.
- Thus we can define $x_{1}, x_{2}, \ldots, x_{v-3}$ in such a way that $\left[x_{1} x_{2} \cdots x_{v-3}\right]$ is a partial 4-good sequencing.
- Denote the three remaining values by $\alpha_{1}, \alpha_{2}, \alpha_{3}$.


## Greedy Algorithm for 4-good Sequencings (cont.)

- By relabelling $\alpha_{1}, \alpha_{2}, \alpha_{3}$ if necessary, it is possible to ensure that the only possible blocks contained in four consecutive points in

$$
\left[\begin{array}{llllll}
x_{1} & x_{2} & \cdots & x_{v-4} & x_{v-3} & \alpha_{1}
\end{array} \alpha_{2} \alpha_{3}\right]
$$

involve $\alpha_{1}$.

- There are in fact seven possible 3-subsets contained in four consecutive points of the above sequencing that could conceivably be a block in the STS:

$$
\begin{array}{ccc}
\left\{x_{v-5}, x_{v-4}, \alpha_{1}\right\} & \left\{x_{v-5}, x_{v-3}, \alpha_{1}\right\} & \left\{x_{v-4}, x_{v-3}, \alpha_{1}\right\} \\
\left\{x_{v-4}, \alpha_{1}, \alpha_{2}\right\} & \left\{x_{v-3}, \alpha_{1}, \alpha_{2}\right\} & \left\{x_{v-3}, \alpha_{1}, \alpha_{3}\right\} \\
& \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} &
\end{array}
$$

- There are therefore at most seven "bad" choices for $x_{v-2}$, and hence one of $x_{1}, \ldots, x_{8}$ must be a good choice.
- Suppose we swap $\alpha_{1}$ with a good $x_{i}$, where $1 \leq i \leq 8$, which we denote by $x_{\kappa}$.


## Greedy Algorithm for 4-good Sequencings (cont.)

- After we replace $x_{\kappa}$ by $\alpha_{1}$, we need to make sure that there is no block contained in any four consecutive points in $x_{1}, x_{2}, x_{3}, \ldots, x_{11}$.
- Thus, we require that

$$
\alpha_{1} \notin Z=\left\{\operatorname{third}\left(x_{i}, x_{j}\right): 1 \leq i<j \leq 11,|i-j| \leq 3\right\} .
$$

- There are at most $10+9+8=27$ points in the set $Z$ :

$$
\begin{aligned}
& \operatorname{third}\left(x_{1}, x_{2}\right), \ldots, \operatorname{third}\left(x_{10}, x_{11}\right), \\
& \operatorname{third}\left(x_{1}, x_{3}\right), \ldots, \operatorname{third}\left(x_{9}, x_{11}\right), \\
& \operatorname{third}\left(x_{1}, x_{4}\right), \ldots, \operatorname{third}\left(x_{8}, x_{11}\right)
\end{aligned}
$$

- Suppose we ensure that all elements in $Z$ have been used as an $x_{i}$-value with $i \leq v-6$.
- Then $\alpha_{1} \notin Z$ and we can swap it in for $x_{\kappa}$.


## Greedy Algorithm for 4-good Sequencings (cont.)

- It turns out that we can fit all the elements of $Z$ into $\left\{x_{1}, \ldots, x_{66}\right\}$ without any problems arising.
- Define

$$
Y=Z \backslash\left\{x_{1}, \ldots, x_{11}\right\} .
$$

and denote the points in $Y$ as $y_{1}, \ldots, y_{m}$, where $m \leq 27$.

- We can define $\left\{x_{12}, \ldots, x_{2 m+12}\right\}$ so the following holds:

| $x_{12}$ | $x_{13}$ | $y_{1}$ | $x_{15}$ | $y_{2}$ | $x_{17}$ | $y_{3}$ | $x_{19}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{2 m+7}$ | $y_{m-2}$ | $x_{2 m+9}$ | $y_{m-1}$ | $x_{2 m+11}$ | $y_{m}$ |  |  |

- These $2 m+12 \leq 66$ points should not overlap the last six points, so we require $v \geq 72$.


## Motivation and Related Problems

- A sequenceable $\operatorname{STS}(v)$ is an $\operatorname{STS}(v)$ in which the points can be ordered (i.e., sequenced) so that no $t$ consecutive points can be partitioned into $t / 3$ blocks, for any $t \equiv 0 \bmod 3, t<v$.
- Brian Alspach gave a talk entitled Strongly Sequenceable Groups at the 2018 Kliakhandler Conference held at MTU.
- In this talk, among other things, the notion of sequencing diffuse posets was introduced and the following research problem was posed:
"Given a triple system of order $n$ with $\lambda=1$, define a poset $P$ by letting its elements be the triples and any union of disjoint triples. This poset is not diffuse in general, but it is certainly possible that $P$ is sequenceable."


## Motivation and Related Problems (cont.)

- One possible relaxation of the definition of sequenceable STS $(v)$ would be to require a sequencing of the points so that no $t$ consecutive points can be partitioned into $t / 3$ blocks, for any $t \equiv 0 \bmod 3$ such that $t \leq w$, where $w<v$ is some specified integer.
- Such an $\operatorname{STS}(v)$ could be termed $w$-semi-sequenceable.
- A 3-semi-sequenceable $\operatorname{STS}(v)$ has a sequencing of the points so that no three consecutive points form a block. This is identical to a 3 -good sequencing.
- There is a connection between $w$-semi-sequenceable STS $(v)$ and $\mathrm{STS}(v)$ having $\ell$-good sequencings.


## Theorem

Theorem 1
An STS $(v)$ having a $(2 u+1)$-good sequencing is $3 u$-semi-sequenceable.

## Proof.

Suppose there are $3 u$ consecutive points, say $x_{1}, \ldots, x_{3 u}$, in a sequencing $\pi$, that can be partitioned into $u$ blocks of the STS $(v)$, say $B_{1}, \ldots, B_{u}$. For $1 \leq j \leq u$, let

$$
m_{l o}(j)=\min \left\{i: x_{i} \in B_{j}\right\} \quad \text { and } \quad m_{h i}(j)=\max \left\{i: x_{i} \in B_{j}\right\} .
$$

Clearly there is a block $B_{j}$ such that $m_{l o}(j) \geq u$. It also holds that $m_{h i}(j) \leq 3 u$. Therefore $B_{j} \subseteq\left\{x_{u}, \ldots, x_{3 u}\right\}$, which means that the sequencing $\pi$ is not $(2 u+1)$-good.

Thank You For Your Attention!


