On Partial Sums in Cyclic Groups

Douglas R. Stinson
David R. Cheriton School of Computer Science
University of Waterloo

MCCCC 2014

UNLV, October 22-24, 2014

This talk is based on joint work with Dan Archdeacon and Jeff Dinitz.

Partial Sums in Cyclic Groups

- Let $(G,+)$ be an additive abelian group with identity element 0.
- Suppose that $A \subseteq G \backslash\{0\},|A|=k$.
- Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be an ordering of the elements in A.
- Define the partial sums as

$$
s_{j}=\sum_{i=1}^{j} a_{i}
$$

$1 \leq j \leq k$, where the computations are done in G.

The Conjecture

Conjecture 1
There exists an ordering of the elements of any subset
$A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ such that the partial sums are all distinct, i.e., for all
$1 \leq i<j \leq k$, it holds that $s_{i} \neq s_{j}$.
Example 2
Suppose we have $A=\{1,2,3,4,5,6\} \subseteq \mathbb{Z}_{8}$. Consider the ordering:

$$
\begin{array}{llllll}
1 & 6 & 3 & 4 & 5 & 2 .
\end{array}
$$

The partial sums are

$$
172634 .
$$

Conjecture 1 is due to Archdeacon [1], who was motivated by a construction for embedding complete graphs so the faces are 2-colourable and each colour class is a cycle system.

Sequenceable Groups

- Conjecture 1 is also a natural generalization of the idea of sequenceable and R-sequenceable groups.
- A group G is sequenceable if there exists an ordering of all the group elements such that all the partial sums are distinct.
- It is known that $\left(\mathbb{Z}_{n},+\right)$ is sequenceable if and only if n is even (Lucas-Walecki, 1892).
- More generally, it is known (Gordon, 1961) that an abelian group is sequenceable if and only if it has a unique element of order 2.
- A sequencing of $\left(\mathbb{Z}_{2 t},+\right)$ is given by

$$
0,1,2 t-2,3,2 t-4,5, \ldots, 4,2 t-3,2,2 t-1
$$

Sequenceable Groups (cont.)

- When n is odd, $\left(\mathbb{Z}_{n},+\right)$ cannot be sequenced because the sum of all the group elements is zero (the first element in the sequencing must be 0 , so the first and last sums both equal zero).
- However, it has been shown that $\left(\mathbb{Z}_{n},+\right)$ is R-sequenceable when n is odd (this generalization allows the first and last sums to both equal zero).
- Conjecture 1 can be considered as a sequencing of an arbitrary subset of the non-zero elements of the cyclic group $\left(\mathbb{Z}_{n},+\right)$, which in theory should be easier (?) than sequencing the whole group.

Computational Results

- Conjecture 1 is true for $n \leq 25$. Here is the algorithm we used:

1. For each $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ choose a random permutation of the elements of A.
2. Repeat step 1 until a valid ordering of the elements in A is found.

- When $|A|$ is small compared to n, we usually only need to try very few random permutations before a valid ordering is found.
- However as $|A|$ increases, many more random permutations might be required before we find an ordering that works.
- The algorithm was programmed in Mathematica and was run on a laptop.
- It found all the orderings of the subsets of \mathbb{Z}_{24} in roughly 3 days.
- The subsets of \mathbb{Z}_{25} took longer.

Some Data for $n=25$

- When $n=25$ we needed fewer than 6 tries for nearly all subsets with $|A| \leq 7$.
- We used fewer than 100 tries when $|A| \leq 13$ and fewer than 10,000 tries when $|A| \leq 18$.
- However, when $|A| \geq 22$, there were cases where over 300,000 permutations were tried before a valid ordering was found.
- In general, between 10,000 and 75,000 permutations were checked before finding a valid ordering for larger subsets A.

Some Data for $n=25$ (cont.)

set $=\{2,3,4,5,7,8,9,10,11,12,14,16,17,18,19,20,21,22,23,24\}$
531326020174185660th permutation
ordering $=(17,19,14,22,7,2,3,24,11,8,21,23,20,10,4,5,18,9,12,16)$
sums $=(17,11,0,22,4,6,9,8,19,2,23,21,16,1,5,10,3,12,24,15)$
tries $=4248$
set $=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,18,19,21,22,23,24\}$
38365003045691958047th permutation
ordering $=(8,18,14,24,16,12,7,21,5,13,9,10,2,3,6,23,11,4,22,1,19)$
sums $=(8,1,15,14,5,17,24,20,0,13,22,7,9,12,18,16,2,6,3,4,23)$
tries $=15631$
set $=\{1,2,3,4,6,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24\}$
27671803621643841656 th permutation
ordering $=(22,17,12,15,24,6,11,4,19,23,1,2,18,10,3,13,8,9,21,14,16)$
sums $=(22,14,1,16,15,21,7,11,5,3,4,6,24,9,12,0,8,17,13,2,18)$
tries $=304138$

The Conjecture is True for $k \leq 5$

For $k=1,2,3$, the result is easy. We give a proof for $k=4$.
(1) Let p be the number of pairs $\{x,-x\} \subseteq A$. So $p=0,1$ or 2 .
(2) If $p=2$, then $A=\{x,-x, y,-y\}$ and the ordering

$$
(x, y,-x,-y)
$$

works.
(3) If $p=1$, then $A=\{x,-x, y, z\}$ and the ordering

$$
(z, x, y,-x)
$$

works.

The Conjecture is True for $k \leq 5$ (cont.)

(4) So we can now assume $p=0$. First choose three elements from A and order them as $\left(a_{1}, a_{2}, a_{3}\right)$ in such a way that s_{1}, s_{2} and s_{3} are distinct. It is clear that $s_{4} \neq s_{3}, s_{2}$. If $s_{4} \neq s_{1}\left(=a_{1}\right)$ we are done, so assume $s_{4}=s_{1}$. Then $a_{2}+a_{3}+a_{4}=0$.
Now consider the sequence

$$
\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right)=\left(a_{2}, a_{1}, a_{3}, a_{4}\right)
$$

Let s_{j}^{\prime} be the sum of the first j terms in this new sequence. We only need to check that $s_{1}^{\prime} \neq s_{4}^{\prime}$. This fails only if
$a_{1}+a_{3}+a_{4}=0$, but from above we have that $a_{2}+a_{3}+a_{4}=0$, so $a_{1}=a_{2}$ which is a contradiction.

The proof for $k=5$ is messier; we did not attempt a proof for $k=6$.

A Result on Ordering Subsets of A

Theorem 3
For any $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ with $|A|=k$, there exists $B \subseteq A$ such that

1. $|B| \geq\lfloor(k+1) / 2\rfloor$ and
2. B can be ordered so its partial sums are distinct.

Proof:

- Assume that the sequence $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ of elements from A has the property that $s_{i} \neq s_{j}$ for $1 \leq i<j \leq r$.
- If there are at least $r+1$ elements from A not already used in the sequence, then we can choose one, say $x \in A$, such that $s_{r}+x \neq s_{i}$ for all $i \leq r$.
- This is possible if $k \geq 2 r+1$, i.e., if $r \leq\lfloor(k-1) / 2\rfloor$.
- Given such an x, we can extend the sequence by defining $a_{r+1}=x$.

Many Subsets of A Can Be Ordered

Theorem 4
For any $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$ with $|A|=2 t$, there exist at least 2^{t}
t-subsets $B \subseteq A$ that can be ordered so their partial sums are distinct.

Proof:

- Given a sequence of length r having distinct partial sums, there are at least $2 t-2 r$ ways to extend it to a sequence of length $r+1$
- We get at least $2 t \times(2 t-2) \times \cdots \times 2=2^{t} t$! permissible orderings of t-subsets $B \subseteq A$
- Any given t-subset B occurs at most t ! times.
- Therefore there are at least 2^{t} different t-subsets $B \subseteq A$ that can be ordered.
A similar (but slightly messier) result can be proven when $|A|$ is odd.

Ordering Random Subsets A

Lemma 5
Let $1 \leq k \leq n-1$ and let $T \in \mathbb{Z}_{n}$. For any set $A \in \mathbb{Z}_{n}$, let s_{A} be the sum of the elements of A. Then for a randomly chosen k-subset $A \subseteq \mathbb{Z}_{n} \backslash\{0\}$, the probability that $s_{A}=T$ is at most $2 / n$.

Theorem 6
Let A be a randomly chosen k-subset of $\mathbb{Z}_{n} \backslash\{0\}$. Then the probability that A cannot be ordered so its partial sums are distinct is at most $k(k-1) / n$.

If we take $k \approx \sqrt{n / 2}$, then we see that a randomly chosen $\sqrt{n / 2}$-subset of $\mathbb{Z}_{n} \backslash\{0\}$ can be ordered with probability at least $1 / 2$.

Ordering Random Subsets A (cont.)

Proof idea (informal, non-rigourous):

- For $i<j$, observe that $s_{i}=s_{j}$ if and only if the run

$$
r_{i j}:=\sum_{h=i+1}^{j} a_{h}=0 .
$$

- An ordering is "good" if all $\binom{k}{2}$ runs are non-zero.
- From the previous lemma, the probability that a particular run equals zero is at most $2 / n$.
- The probability that at least one run equals zero is at most

$$
\binom{k}{2} \times \frac{2}{n}=\frac{k(k-1)}{n}
$$

References

[1] Dan Archdeacon. Heffter arrays and biembedding graphs on surfaces. Preprint, 2014.
[2] M. A. Ollis. Sequenceable groups and related topics. Electronic Journal of Combinatorics 20 (2013), \#DS10v2.

Thank You For Your Attention!

