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All-or-nothing Transforms

• X is a finite set

• s is a positive integer, and φ : Xs → Xs.

• φ is an unconditionally secure all-or-nothing transform
provided that the following properties are satisfied:

1. φ is a bijection.
2. If any s− 1 of the s output values y1, . . . , ys are fixed, then

the value of any one input value xi (1 ≤ i ≤ s) is completely
undetermined.

• We will denote such a function as an (s, v)-AONT , where
v = |X|.

• The desired property can be expressed as

H(Xi | Y1, . . . , Yj−1, Yj+1, . . . , Ys) = H(Xi),

for all i and j such that 1 ≤ i ≤ s and 1 ≤ j ≤ s .



Cryptographic Motivation

• Rivest defined AONT in 1997 to provide a mode of operation
for block ciphers that would require the decryption of all
blocks of an encrypted message in order to determine any
specific single block of plaintext.

• Suppose we are given s blocks of plaintext, (x1, . . . , xs).

• First, we apply an AONT , computing

(y1, . . . , ys) = φ(x1, . . . , xs).

• Then we encrypt (y1, . . . , ys) using a block cipher.

• At the receiver’s end, the ciphertext is decrypted, and then
the inverse transform φ−1 is applied to restore the s plaintext
blocks.

• Note that the transform φ is not secret.



Linear AONT

• Let Fq be a finite field of order q.

• An (s, q)-AONT defined on Fq is linear if each yi is an
Fq-linear function of x1, . . . , xs.

Theorem 1 (Stinson, 2000)

Suppose that q is a prime power and M is an invertible s by s
matrix with entries from Fq, such that no entry of M is equal to 0.
Then the function φ : (Fq)

s → (Fq)
s defined by

φ(x) = xM−1

is a linear (s, q)-AONT.



Example: Hadamard Matrices

• Suppose p > 2 is prime, s ≡ 0 mod 4, and H is a Hadamard
matrix of order s.

• H has entries ±1 and HHT = sIs.

• Construct M by reducing the entries of H modulo p.

• Then M yields a linear (s, p)-AONT .

• If s = 4 and p = 3, we have

H =


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

→M =


1 1 1 1
1 2 2 1
1 2 1 2
1 1 2 2





Example: Cauchy Matrices

• An s by s Cauchy matrix can be defined over Fq if q ≥ 2s.

• Let a1, . . . , as, b1, . . . , bs be distinct elements of Fq.

• Let

cij =
1

ai − bj
,

for 1 ≤ i ≤ s and 1 ≤ j ≤ s.

• Then C = (cij) is the Cauchy matrix defined by the sequence
a1, . . . , as, b1, . . . , bs.

• A Cauchy matrix C is invertible, and all of its entries are
non-zero, so C yields an (s, q)-AONT .



Example: The Bierbrauer Construction

• Let q = pk where q > 2, p is prime and k is a positive integer.

• Let λ ∈ Fq be such that λ 6∈ {s− 1 mod p, s− 2 mod p}.
• Define γ = (s− 1− λ)−1; note that γ 6= 0, 1.

• Let M be the following (symmetric) matrix:

M =



1− γ −γ −γ . . . −γ γ
−γ 1− γ −γ . . . −γ γ
−γ −γ 1− γ . . . −γ γ

...
...

...
. . .

...
...

−γ −γ −γ . . . 1− γ γ
γ γ γ . . . γ −γ


.



Example: The Bierbrauer Construction (cont.)

• It is straightforward to verify that M is invertible; indeed, we
have

M−1 =


1 0 0 . . . 0 1
0 1 0 . . . 0 1
...

...
...

. . .
...

...
0 0 0 . . . 1 1
1 1 1 . . . 1 λ

 .

• Therefore M yields an (s, q)-AONT .

• This AONT is also very efficient computationally, since it is
sparse (it contains mostly 0 entries).



Binary Transforms

• A transform defined over F2 is termed a binary transform.

• A binary transform automatically yields a transform over any
field F2n , in which the only computations are exclusive-ors of
bitstrings.

• Unfortunately, there is no (linear or nonlinear) (s, 2)-AONT
for any s ≥ 2!

• This suggests looking for (binary, linear) transforms that are
“close to” AONT .

• Suppose that s is even, and let M = Js − Is (where Js is the
s by s all-1’s matrix).



Binary Transforms (cont.)

• For example, when s = 4, we have

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

.
• Then M−1 =M , where M is considered as a matrix over F2.

• In this resulting transform, each xj will depend on all the yi’s
except for yj .

• The density of 1’s in the example above is 12/16 = 3/4.



Generalized AONT

• Let |X| = v and let 1 ≤ t ≤ s.

• φ : Xs → Xs is a t-all-or-nothing transform provided that the
following properties are satisfied:

1. φ is a bijection.
2. If any s− t of the s output values y1, . . . , ys are fixed, then

any t of the input values xi (1 ≤ i ≤ s) are completely
undetermined.

• We will denote such a function φ as a (t, s, v)-AONT .

• The original definition corresponds to a 1-AONT .

• Property 2 can be rephrased as follows: for all
X ⊆ {X1, . . . , Xs} with |X | = t, and for all Y ⊆ {Y1, . . . , Ys}
with |Y| = t, it holds that

H(X | {Y1, . . . , Ys} \ Y) = H(X ). (1)



Linear t-AONT

For an s by s matrix M with entries from Fq, and for
I, J ⊆ {1, . . . , s}, define M(I, J) to be the |I| by |J | submatrix of
M induced by the columns in I and the rows in J .

Theorem 2
Suppose that q is a prime power and M is an invertible s by s
matrix with entries from Fq. Let

X ⊆ {X1, . . . , Xs}, |X | = t,

and let
Y ⊆ {Y1, . . . , Ys}, |Y| = t.

Then the function φ(x) = xM−1 satisfies (1) with respect to X
and Y if and only if the t by t submatrix M(I, J) is invertible,
where I = {i : Xi ∈ X} and J = {j : Yj ∈ Y}.



Cauchy Matrices, Again

Any square submatrix of a Cauchy matrix is again a Cauchy
matrix, and therefore it (the submatrix) is invertible. So we have
the following result.

Theorem 3
Suppose q is a prime power and q ≥ 2s. Then there is a linear
transform that is simultaneously a (t, s, q)-AONT for all t such
that 1 ≤ t ≤ s.



Binary t-AONT

• We quantify the “closeness” of M to a t-AONT by
considering the ratio of the number of invertible t by t
submatrices to the total number of t by t submatrices.

• For an s by s invertible 0− 1 matrix M and for 1 ≤ t ≤ s, we
define

Nt(M) = number of invertible t by t submatrices of M

and

Rt(M) =
Nt(M)(

s
t

)2 .

• We refer to Rt(M) as the t-density of the matrix M .

• We also define

Rt(s) = max{Rt(M) :M is an s by s invertible 0− 1 matrix}.

• Rt(s) denotes the maximum t-density of any s by s invertible
0− 1 matrix.



Invertible 2 by 2 0− 1 Matrices

A 2 by 2 0− 1 matrix is invertible if and only if it is one of the
following six matrices:(

1 1
1 0

) (
1 1
0 1

) (
0 1
1 1

)
(

1 0
1 1

) (
1 0
0 1

) (
0 1
1 0

)
.



Example

• Define a 3 by 3 matrix:

M =

 1 1 1
1 0 1
1 1 0

.
• Seven of the nine 2 by 2 submatrices of M are invertible.

• The only non-invertible 2 by 2 submatrices are
M({1, 3}, {1, 2}) and M({1, 2}, {1, 3}).

• Both of these submatrices are equal to(
1 1
1 1

)
.

• Finally, M itself is invertible.

• Therefore, R2(M) = 7/9.

• In fact, this is optimal, so R2(3) = 7/9.



Another Example

• Consider the 4 by 4 matrix J4 − I4:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

.
• 30 of the 36 2 by 2 submatrices of M are invertible.

• Also, M itself is invertible.

• Therefore, R2(M) = 5/6.

• In fact, this is optimal, so R2(4) = 5/6.



An Upper Bound on R2(s)

• Let N be a 2 by s 0− 1 matrix and consider its 2 by 1
submatrices.

• Suppose there are:

• a0 occurrences of

(
0
0

)
,

• a1 occurrences of

(
0
1

)
,

• a2 occurrences of

(
1
0

)
, and

• a3 occurrences of

(
1
1

)
.

• Of course a0 + a1 + a2 + a3 = s.

• The number of invertible 2 by 2 submatrices in N is

a1a2 + a1a3 + a2a3.



An Upper Bound on R2(s) (cont.)

• This expression is maximized when

a0 = 0, a1 = a2 = a3 = s/3.

• Therefore, the maximum number of invertible 2 by 2
submatrices is

3
(s
3

)2
=
s2

3
.

• We have proven the following result.

Lemma 4
A 2 by s 0− 1 matrix contains ≤ s2/3 invertible 2 by 2
submatrices.



An Upper Bound on R2(s) (cont.)

Theorem 5
For any s ≥ 2, it holds that

R2(s) ≤
2s

3(s− 1)
.

Proof.
From Lemma 4, in any two rows of M there are at most s2/3
invertible 2 by 2 submatrices. In the entire matrix M , there are

(
s
2

)
ways to choose two rows, and there are

(
s
2

)2
submatrices of order

2. This immediately yields

R2(s) ≤
(
s
2

)
(s2/3)(
s
2

)2 =
2s

3(s− 1)
.



An Improved Upper Bound

• We begin by establishing upper bound on the number of
invertible 2 by 2 submatrices in any 4 by s 0− 1 matrix.

• Label the non-zero vectors in {0, 1}4 in lexicographic order as
follows:

b0 = (0, 0, 0, 0) b1 = (0, 0, 0, 1) b2 = (0, 0, 1, 0)
b3 = (0, 0, 1, 1) . . . b15 = (1, 1, 1, 1).

• For 1 ≤ i, j ≤ 15, define cij to be the number of invertible 2
by 2 submatrices in the 4 by 2 matrix

(
bTi bTj

)
.

• Let C = (cij).

• C is a 15 by 15 symmetric matrix with zero diagonal such
that every off-diagonal element is a positive integer.



The Matrix C

C =



0 1 1 1 1 2 2 1 1 2 2 2 2 3 3
1 0 1 1 2 1 2 1 2 1 2 2 3 2 3
1 1 0 2 3 3 2 2 3 3 2 4 5 5 4
1 1 2 0 1 1 2 1 2 2 3 1 2 2 3
1 2 3 1 0 3 2 2 3 4 5 3 2 5 4
2 1 3 1 3 0 2 2 4 3 5 3 5 2 4
2 2 2 2 2 2 0 3 5 5 5 5 5 5 3
1 1 2 1 2 2 3 0 1 1 2 1 2 2 3
1 2 3 2 3 4 5 1 0 3 2 3 2 5 4
2 1 3 2 4 3 5 1 3 0 2 3 5 2 4
2 2 2 3 5 5 5 2 2 2 0 5 5 5 3
2 2 4 1 3 3 5 1 3 3 5 0 2 2 4
2 3 5 2 2 5 5 2 2 5 5 2 0 5 3
3 2 5 2 5 2 5 2 5 2 5 2 5 0 3
3 3 4 3 4 4 3 3 4 4 3 4 3 3 0



.



A Quadratic Program

Define z = (z1, . . . , z15) and consider the following quadratic
program Q:

Maximize γ = 1
2zCz

T

subject to
∑15

i=1 zi ≤ 1 and zi ≥ 0, for all i, 1 ≤ i ≤ 15.

We were able to solve the quadratic program Q using the BARON
software on the NEOS server

http://www.neos-server.org/neos/.

The optimal solution to Q is γ = 15/8.

http://www.neos-server.org/neos/


The Improved Bound

• It follows that the number of invertible 2 by 2 submatrices in
a 4 by s matrix is at most 15s2/8.

• The number of invertible 2 by 2 submatrices in an s by s
matrix is at most (

s
4

)(
s−2
2

) × 15s2

8
=

5s3(s− 1)

32
.

• Hence,

R2(s) ≤
5s3(s− 1)

32
× 1(

s
2

)2 =
5s

8(s− 1)
.

• Asymptotically, the upper bound on R2(s) has been improved
from 2/3 to 5/8.



Symmetric BIBDs

• A (v, k, λ)-balanced incomplete block design (BIBD) is a pair
(X,A), where X is a set of v points and A is a collection of
k-subsets of X called blocks, such that every pair of points
occurs in exactly λ blocks.

• Denote b = |A|; then b = λv(v − 1)/(k(k − 1)).

• Every point occurs in exactly r = bk/v = λ(v − 1)/(k − 1)
blocks.

• A BIBD is symmetric if v = b.

• Suppose (X,A) is a (v, k, λ)-BIBD.

• Denote X = {xi : 1 ≤ i ≤ v} and A = {Aj : 1 ≤ j ≤ b}.
• The incidence matrix of (X,A) is the v by b 0− 1 matrix
M = (mij) where mij = 1 if xi ∈ Aj , and mij = 0 if xi 6∈ Aj .



Invertibility of Incidence Matrices of Symmetric BIBDs

Lemma 6
Suppose M is the incidence matrix of a symmetric (v, k, λ)-BIBD.
Then M is invertible over F2 if and only if k is odd and λ is even.

Proof.
It is well-known that det(M) is an integer and

(det(M))2 = k2(k − λ)v−1.

Reducing modulo 2, we see that det(M) ≡ 1 mod 2 if and only if
k is odd and λ is even.



Invertibility of Incidence Matrices of Symmetric BIBDs

Theorem 7
Suppose M is the incidence matrix of a (v, k, λ)-BIBD where k is
odd and λ is even. Then

R2(M) =
k2 − λ2(

v
2

) . (2)

Proof.
Given any two rows of M , we have a3 = λ, a1 = a2 = k − λ.
Hence,

a1a2 + a1a3 + a2a3 = (k − λ)2 + 2λ(k − λ) = k2 − λ2.

The expression (2) is maximized when k ≈ v√
2

, in which case

R2(M) ≈ 1/2.



An Infinite Class of Examples from SBIBDs

• The points and hyperplanes of the m-dimensional projective

geometry over F3 yield a
(
3m+1−1

2 , 3
m−1
2 , 3

m−1−1
2

)
-SBIBD.

• Complement it to get a
(
3m+1−1

2 , 3m, 2× 3m−1
)

-SBIBD.

• Since k odd and λ even, we can apply Theorem 7.

• Then

R2

(
3m+1 − 1

2

)
≥ 40× 32m−3

(3m+1 − 1)(3m − 1)
.



Example

• If we take m = 2, then we are starting with a
(13, 4, 1)-SBIBD.

• After complementing, we have a (13, 9, 6)-SBIBD.

• This yields

R2 (13) ≥
15

26
.

• Asymptotically, this class of examples has

R2(M) ≈ 40

81
≈ .494.

• This is the best asymptotic result we have at present.



A Possibly Infinite Class of Examples from SBIBDs

• Suppose q = 4t2 + 9 is prime and t is odd.

• Then the quartic residues modulo q, together with 0, form a

difference set which generates a
(
q, q+3

4 , q+3
16

)
-SBIBD.

• Complement this design to get a
(
q, 3(q−1)4 , 3(3q−7)16

)
-SBIBD.

• Since k is odd and λ is even, the incidence matrix M is
invertible.

• Unfortunately, it is not known if an infinite number of primes
of the desired form exist.

• If there are arbitrarily large primes of this type, we obtain

R2(M) ≈ 63

128
≈ .492.



Examples from Cyclotomy

• Let p = 4f + 1 be prime, where f is even, and let ν ∈ Fp
∗ be

a primitive element.

• Let C0 = {ν4i : 0 ≤ i ≤ f − 1}; this is the unique subgroup of
Fp
∗ having order f .

• The multiplicative cosets of C0 are Cj = νjC0, for
j = 0, 1, 2, 3.

• These cosets are often called cyclotomic classes.

• Construct a p by p 0− 1 matrix M ′ = (mij) from C0.

• The rows and columns of M ′ are indexed by Fp, and

mij = 1 if and only if j − i ∈ C0.

• The ith row of M ′ is the incidence vector of i+ C0.

• Finally, define M to be the complement of M ′.



Cyclotomic Numbers

Theorem 8
Suppose p = 4f + 1 is prime and f is even. Let ν ∈ Fq be a
primitive element. Let p = α2 + β2, where α ≡ 1 mod 4 and
νf ≡ α/β mod p. Then the cyclotomic numbers denoted (j, j),
where (j, j) = |Cj ∩ (1 + Cj)| for 0 ≤ j ≤ 3, are as follows:

(0, 0) =
p− 11− 6α

16

(1, 1) =
p− 3 + 2α− 4β

16

(2, 2) =
p− 3 + 2α

16

(3, 3) =
p− 3 + 2α+ 4β

16
.



Invertible 2 by 2 Submatrices

• Using these results on cyclotomic numbers, we can show that
the total number of invertible 2 by 2 submatrices in M is(

p

2

) 3∑
i=0

(
5f2 + 2f −Ai(4f + 2 +Ai)

4

)
=

(
p

2

)
252f2 + 168f + 25− 3α2 − 2β2 − 6α

64
,

• Asymptotically, we have that the density of these examples
approaches 63/128 ≈ .492.

• But are the matrices invertible?

• We can check invertibility by a simple gcd computation.

• Up to order 500, we get invertible matrices when
p = 17, 97, 193, 241, 401, 433, 449.



Future Work and Open Problems

• Can we improve the upper bounds on R2(s) by using
appropriate software to solve larger quadratic programs?

• Is there a theoretical criterion to determine the invertibility of
the matrices obtained from cyclotomy-based constructions?

• It is easy to show that the expected density of invertible 2 by
2 submatrices in an s by s matrix is 0.5, if every entry is
chosen randomly to be a “1” with probability 1/

√
2. But

what about the invertibility of the s by s matrices?

• Does lims→∞R2(s) exist? If so, is lims→∞R2(s) = 0.5?

• We have determined the optimal density R2(s) for s ≤ 8 by
exhaustive search. Can we extend the exhaustive search to
compute R2(9)?
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Thank You For Your Attention!


