Optimal orthogonal arrays with repeated rows

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

Canadian Discrete and Algorithmic Mathematics Conference (CanaDAM 2019)

Vancouver, May 28-31, 2019

This is joint work with Charlie Colbourn and Shannon Veitch

Definitions and a Bound

- Let $k \ge 2$, $n \ge 2$ and $\lambda \ge 1$ be integers.
- An orthogonal array OA_λ(k, n) is a λn² by k array, A, with entries from a set X of cardinality n such that, within any two columns of A, every ordered pair of symbols from X occurs in exactly λ rows of A.
- In this talk, we are interested in $OA_{\lambda}(\mathbf{k}, \mathbf{n})$ that contain a row that is repeated *m* times, where *m* is as large as possible.

Theorem 1

Let $k \ge 2$, $n \ge 2$ and $\lambda \ge 1$ be integers. If there is an $OA_{\lambda}(\mathbf{k}, \mathbf{n})$ containing a row that is repeated m times, then

$$m \le \frac{\lambda n^2}{k(n-1)+1}.$$

Comments

- Theorem 1 is a straightforward extension of the classical *Plackett-Burman bound* for OAs of strength two. It improves the *Plackett-Burman bound* by a factor of *m*.
- Note the resemblance to *Mann's inequality*, which states that $b \ge mv$ for a BIBD that contains a block of multiplicity m. This improves *Fisher's inequality* by a factor of m.
- A short proof of Theorem 1, based on the original proof of the *Plackett-Burman bound*, is given in Stinson [4].
- The proof uses a standard "variance" technique.
- However this theorem is also an immediate corollary of a much more general theorem of Mukerjee, Qian and Wu [3].

Definitions and Background

- An $OA_{\lambda}(k,n)$ containing a row that is repeated

$$m = \frac{\lambda n^2}{k(n-1)+1} \tag{1}$$

times will be termed optimal.

- Another way to view the optimality property is to observe that the ratio m/λ is as large as possible in an optimal OA.
- We note that, in a recent paper, Culus and Toulouse [2] discuss an application where it is beneficial to construct optimal orthogonal arrays.
- They also construct several small examples of optimal OAs using linear programs.

Structural Properties

• Without loss of generality we can assume that the *m*-times repeated row has the form $x \ x \cdots x$ for any specified symbol x.

Theorem 2

Let $k \ge 2$, $n \ge 2$ and $\lambda \ge 1$ be integers. Suppose there is an optimal $OA_{\lambda}(\mathbf{k}, \mathbf{n})$, say A, containing a row $x \ x \cdots x$ that is repeated m times. Then every other row of A contains exactly (k-1)/n occurrences of the symbol x and thus $k \equiv 1 \mod n$.

• Therefore, the following are necessary conditions for the existence of an optimal $OA_{\lambda}(\mathbf{k}, \mathbf{n})$ with an *m*-times repeated row:

•
$$k \ge 2$$
 and $n \ge 2$,
• $m = \frac{\lambda n^2}{k(n-1)+1}$, and
• $\overline{a} = \frac{k-1}{2}$ is a positive integer.

Basic OAs

- An optimal $OA_{\lambda}(\mathbf{k}, \mathbf{n})$ is basic if $gcd(m, \lambda) = 1$.
- A basic OA cannot consist of multiple copies of OAs with smaller λ .
- As an example, we construct a basic **OA**₃(**5**, **2**) from the following two starting rows:

• We cyclically rotate these starting rows five times, and then adjoin m=2 rows of 0's.

0	0	1	1	1	0	1	0	1	1
1	0	0	1	1	1	0	1	0	1
1	1	0	0	1	1	1	0	1	0
1	1	1	0	0	0	1	1	0	1
0	1	1	1	0	1	0	1	1	0
0	0	0	0	0	0	0	0	0	0

Another Example of a Basic OA

- We construct a basic $OA_5(7,3)$ with m = 3.
- We have three starting rows, consisting of symbols from the set $\{\infty\}\cup\mathbb{Z}_2 {:}$

∞	∞	0	0	0	0	1
∞	1	∞	0	1	1	0
∞	1	1	∞	1	0	1

- First, cyclically rotate each starting row seven times.
- Then develop each row modulo 2 (the point ∞ is fixed).
- Finally, adjoin three rows of ∞ 's.
- The resulting $3 \times 7 \times 2 + 3 = 45$ rows form a basic **OA**₅(7,3).

Basic OAs with n = 2

Lemma 3 A basic $OA_{\lambda}(\mathbf{k}, \mathbf{2})$ with m > 1 has m = 2, $\lambda = 2t + 1$ and k = 4t + 1 for some positive integer t.

Proof.

•
$$(k-1)/n = (k-1)/2$$
 is an integer, so $k = 2s + 1$.

We have

$$m = \frac{\lambda n^2}{k(n-1)+1} = \frac{4\lambda}{k+1} = \frac{2\lambda}{s+1},$$

so $2\lambda = m(s+1)$.

- $gcd(m,\lambda) = 1$ so m = 1 or 2. But m > 1, so m = 2.
- Then $\lambda = s + 1$.
- Since $gcd(m, \lambda) = 1$, s is even, so s = 2t.
- Then $\lambda = 2t + 1$ and k = 4t + 1.

Basic OAs with n = 2 (cont.)

Theorem 4

There exists a basic $OA_{2t+1}(4t + 1, 2)$ if and only if there is a (4t + 1, 2t + 1, 2t + 1)-BIBD.

Proof.

(\Leftarrow) Let M be the b by v incidence matrix of the given BIBD. Construct the matrix

$$A = \left(\begin{array}{c} 0 \ 0 \cdots 0 \\ 0 \ 0 \cdots 0 \\ M \end{array}\right).$$

Then A is a basic $OA_{2t+1}(4t+1, 2)$. The other direction of the proof is similar.

Constructing the Basic OAs with n=2

Theorem 5

If there exists a Hadamard matrix of order 8t + 4, then there exists a (4t + 1, 2t + 1, 2t + 1)-BIBD (and hence there exists a basic $OA_{2t+1}(4t + 1, 2)$).

Proof.

It is well-known that a Hadamard matrix of order 8t + 4 is equivalent to a symmetric (8t + 3, 4t + 1, 2t)-BIBD. The derived BIBD is a (4t + 1, 2t, 2t - 1)-BIBD. If we then complement every block in this BIBD, we obtain a (4t + 1, 2t + 1, 2t + 1)-BIBD.

A General Construction for Optimal OAs

- Suppose we are given values for k and n, where $k \ge n+1$.
- Take all possible k-tuples that contain precisely $\overline{a} = (k-1)/n$ occurrences of 0, where 0 is one of the symbols.
- Then adjoin

$$m = \frac{\lambda n^2}{k(n-1)+1}$$

rows of 0s, where

$$\lambda = \binom{k-2}{\overline{a}-1}(n-1)^{k-\overline{a}-1}.$$

- We obtain an optimal $OA_{\lambda}(\mathbf{k},\mathbf{n})$.
- For example, suppose k = 7 and n = 3. Then $\overline{a} = 2$, $\lambda = 80$ and m = 48.
- The above-described process yields an optimal $OA_{80}(7,3)$.

An Improvement

- It turns out that the optimal OA_λ(k, n) described above can be partitioned into n − 1 optimal OA_{λ/(n−1)}(k, n).
- Relabel the points so that the m repeated rows each consist of $\infty \infty \cdots \infty$.
- Take the n-1 remaining symbols to be the elements of \mathbb{Z}_{n-1} .
- For any row r in this OA, say A, let s(r) denote the sum modulo n − 1 of the non-infinite elements in this row.
- For any $i \in \mathbb{Z}_{n-1}$, let A_i consist of all the rows \mathbf{r} of A such that $s(\mathbf{r}) = i$.
- Then each A_i is an optimal $OA_{\lambda/(n-1)}(\mathbf{k}, \mathbf{n})$.

A Further Improvement

Theorem 6 Suppose $k \ge n+1$ and suppose $\overline{a} = (k-1)/n$ is an integer. Suppose

$$\gamma = \left\lfloor \frac{k}{\overline{a} + 3} \right\rfloor \ge 1.$$

Then there is an optimal $OA_{\lambda}(\mathbf{k},\mathbf{n})$, where

$$\lambda = \binom{k-2}{\overline{a}-1}(n-1)^{k-\overline{a}-1},$$

that can be partitioned into $(n-1)^{\gamma}$ optimal $OA_{\lambda/(n-1)^{\gamma}}(\mathbf{k}, \mathbf{n})$.

- Suppose we take k = 16 and n = 3.
- Then $\overline{a} = 5$ and $\gamma = 2$.
- We obtain an optimal $OA_{\lambda}(16, 3)$, where

$$\lambda = \binom{14}{4} 2^8.$$

Further Results

• Theorem 1 states that

$$m \le \frac{\lambda n^2}{k(n-1)+1}.$$

- Optimal OAs are OAs where we have equality, which can only occur if the expression the right side is an integer.
- In general, we have

$$m \le \left\lfloor \frac{\lambda n^2}{k(n-1)+1} \right\rfloor.$$

- An OA in which we have equality is termed *m*-optimal.
- We show that, if a "small" number of columns is deleted from an optimal OA, the result is an *m*-optimal OA.

Open Problems

- Find infinite classes of basic OAs with $n \ge 3$.
- Find improved "general" constructions for optimal OAs (i.e., find constructions with smaller λ values than the known constructions).
- Are there recursive constructions for optimal or basic OAs?

References

- C.J. Colbourn, D.R. Stinson and S. Veitch. Constructions of optimal orthogonal arrays with repeated rows. *Discrete Mathematics*, to appear, 2019.
- [2] J.-F. Culus and S. Toulouse. How far from a worst solution a random solution of a k CSP instance can be? Lecture Notes in Computer Science 10979 (2018), 374–386 (IWOCA 2018).
- [3] R. Mukerjee, P. Qian and J. Wu. **On the existence of nested orthogonal arrays.** *Discrete Math.* **308** (2008), 4635–4642.
- [4] D.R. Stinson. Bounds for orthogonal arrays with repeated rows. Bulletin of the ICA 85 (2019), 60–73.

Thank You For Your Attention!

