Optimal orthogonal arrays with repeated rows

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

Canadian Discrete and Algorithmic Mathematics
Conference (CanaDAM 2019)
Vancouver, May 28-31, 2019
This is joint work with Charlie Colbourn and Shannon Veitch

Definitions and a Bound

- Let $k \geq 2, n \geq 2$ and $\lambda \geq 1$ be integers.
- An orthogonal array $\mathrm{OA}_{\lambda}(\mathbf{k}, \mathbf{n})$ is a λn^{2} by k array, A, with entries from a set X of cardinality n such that, within any two columns of A, every ordered pair of symbols from X occurs in exactly λ rows of A.
- In this talk, we are interested in $\mathbf{O A}_{\lambda}(\mathbf{k}, \mathbf{n})$ that contain a row that is repeated m times, where m is as large as possible.

Theorem 1
Let $k \geq 2, n \geq 2$ and $\lambda \geq 1$ be integers. If there is an $\mathbf{O A}_{\lambda}(\mathbf{k}, \mathbf{n})$ containing a row that is repeated m times, then

$$
m \leq \frac{\lambda n^{2}}{k(n-1)+1}
$$

Comments

- Theorem 1 is a straightforward extension of the classical Plackett-Burman bound for OAs of strength two. It improves the Plackett-Burman bound by a factor of m.
- Note the resemblance to Mann's inequality, which states that $b \geq m v$ for a BIBD that contains a block of multiplicity m. This improves Fisher's inequality by a factor of m.
- A short proof of Theorem 1, based on the original proof of the Plackett-Burman bound, is given in Stinson [4].
- The proof uses a standard "variance" technique.
- However this theorem is also an immediate corollary of a much more general theorem of Mukerjee, Qian and Wu [3].

Definitions and Background

- An $\mathrm{OA}_{\lambda}(\mathrm{k}, \mathrm{n})$ containing a row that is repeated

$$
\begin{equation*}
m=\frac{\lambda n^{2}}{k(n-1)+1} \tag{1}
\end{equation*}
$$

times will be termed optimal.

- Another way to view the optimality property is to observe that the ratio m / λ is as large as possible in an optimal OA.
- We note that, in a recent paper, Culus and Toulouse [2] discuss an application where it is beneficial to construct optimal orthogonal arrays.
- They also construct several small examples of optimal OAs using linear programs.

Structural Properties

- Without loss of generality we can assume that the m-times repeated row has the form $x x \cdots x$ for any specified symbol x.

Theorem 2
Let $k \geq 2, n \geq 2$ and $\lambda \geq 1$ be integers. Suppose there is an optimal $\mathrm{OA}_{\lambda}(\mathbf{k}, \mathbf{n})$, say A, containing a row $x x \cdots x$ that is repeated m times. Then every other row of A contains exactly $(k-1) / n$ occurrences of the symbol x and thus $k \equiv 1 \bmod n$.

- Therefore, the following are necessary conditions for the existence of an optimal $\mathrm{OA}_{\lambda}(\mathbf{k}, \mathbf{n})$ with an m-times repeated row:
- $k \geq 2$ and $n \geq 2$,
- $m=\frac{\lambda n^{2}}{k(n-1)+1}$, and
- $\bar{a}=\frac{k-1}{n}$ is a positive integer.

Basic OAs

- An optimal $\mathbf{O A}_{\lambda}(\mathbf{k}, \mathbf{n})$ is basic if $\operatorname{gcd}(m, \lambda)=1$.
- A basic OA cannot consist of multiple copies of OAs with smaller λ.
- As an example, we construct a basic $\mathrm{OA}_{3}(5,2)$ from the following two starting rows:

$$
\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}
$$

- We cyclically rotate these starting rows five times, and then adjoin $m=2$ rows of 0 's.

0	0	1	1	1		0	1	0	1
1	0	0	1	1		1	0	1	0
1									
1	1	0	0	1		1	1	0	1
1	0								
1	1	1	0	0		0	1	1	0
0	1	1	1	0					
0	0	0	0	0	1	0	1	1	0
0	0	0	0	0					

Another Example of a Basic OA

- We construct a basic $\mathrm{OA}_{5}(7,3)$ with $m=3$.
- We have three starting rows, consisting of symbols from the set $\{\infty\} \cup \mathbb{Z}_{2}$:

- First, cyclically rotate each starting row seven times.
- Then develop each row modulo 2 (the point ∞ is fixed).
- Finally, adjoin three rows of ∞ 's.
- The resulting $3 \times 7 \times 2+3=45$ rows form a basic $\mathbf{O A}_{5}(7,3)$.

Basic OAs with $n=2$

Lemma 3

A basic $\mathrm{OA}_{\lambda}(\mathbf{k}, 2)$ with $m>1$ has $m=2, \lambda=2 t+1$ and $k=4 t+1$ for some positive integer t.
Proof.

- $(k-1) / n=(k-1) / 2$ is an integer, so $k=2 s+1$.
- We have

$$
m=\frac{\lambda n^{2}}{k(n-1)+1}=\frac{4 \lambda}{k+1}=\frac{2 \lambda}{s+1}
$$

so $2 \lambda=m(s+1)$.

- $\operatorname{gcd}(m, \lambda)=1$ so $m=1$ or 2 . But $m>1$, so $m=2$.
- Then $\lambda=s+1$.
- Since $\operatorname{gcd}(m, \lambda)=1, s$ is even, so $s=2 t$.
- Then $\lambda=2 t+1$ and $k=4 t+1$.

Basic OAs with $n=2$ (cont.)

Theorem 4
There exists a basic $\mathrm{OA}_{2 \mathrm{t}+1}(4 \mathrm{t}+1,2)$ if and only if there is a $(4 t+1,2 t+1,2 t+1)-B I B D$.

Proof.
(\Leftarrow) Let M be the b by v incidence matrix of the given BIBD.
Construct the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & \cdots \\
0 & 0 \cdots 0 \\
M
\end{array}\right)
$$

Then A is a basic $\mathrm{OA}_{2 \mathrm{t}+1}(4 \mathrm{t}+1,2)$.
The other direction of the proof is similar.

Constructing the Basic OAs with $n=2$

Theorem 5
If there exists a Hadamard matrix of order $8 t+4$, then there exists a $(4 t+1,2 t+1,2 t+1)-B I B D$ (and hence there exists a basic $\mathrm{OA}_{2 \mathrm{t}+1}(4 \mathrm{t}+1,2)$.

Proof.
It is well-known that a Hadamard matrix of order $8 t+4$ is equivalent to a symmetric $(8 t+3,4 t+1,2 t)$ - $B I B D$. The derived BIBD is a $(4 t+1,2 t, 2 t-1)$ - $B I B D$. If we then complement every block in this BIBD, we obtain a $(4 t+1,2 t+1,2 t+1)$ - $B I B D$.

A General Construction for Optimal OAs

- Suppose we are given values for k and n, where $k \geq n+1$.
- Take all possible k-tuples that contain precisely $\bar{a}=(k-1) / n$ occurrences of 0 , where 0 is one of the symbols.
- Then adjoin

$$
m=\frac{\lambda n^{2}}{k(n-1)+1}
$$

rows of 0 s , where

$$
\lambda=\binom{k-2}{\bar{a}-1}(n-1)^{k-\bar{a}-1} .
$$

- We obtain an optimal $\mathrm{OA}_{\lambda}(\mathbf{k}, \mathbf{n})$.
- For example, suppose $k=7$ and $n=3$. Then $\bar{a}=2, \lambda=80$ and $m=48$.
- The above-described process yields an optimal $\mathrm{OA}_{80}(7,3)$.

An Improvement

- It turns out that the optimal $\mathbf{O A}_{\lambda}(\mathbf{k}, \mathbf{n})$ described above can be partitioned into $n-1$ optimal $\mathbf{O A}_{\lambda /(\mathbf{n}-1)}(\mathbf{k}, \mathbf{n})$.
- Relabel the points so that the m repeated rows each consist of $\infty \infty \cdots \infty$.
- Take the $n-1$ remaining symbols to be the elements of \mathbb{Z}_{n-1}.
- For any row \mathbf{r} in this OA , say A, let $s(\mathbf{r})$ denote the sum modulo $n-1$ of the non-infinite elements in this row.
- For any $i \in \mathbb{Z}_{n-1}$, let A_{i} consist of all the rows \mathbf{r} of A such that $s(\mathbf{r})=i$.
- Then each A_{i} is an optimal $\mathbf{O A}_{\lambda /(\mathbf{n}-1)}(\mathbf{k}, \mathbf{n})$.

A Further Improvement

Theorem 6
Suppose $k \geq n+1$ and suppose $\bar{a}=(k-1) / n$ is an integer.
Suppose

$$
\gamma=\left\lfloor\frac{k}{\bar{a}+3}\right\rfloor \geq 1
$$

Then there is an optimal $\mathrm{OA}_{\lambda}(\mathbf{k}, \mathbf{n})$, where

$$
\lambda=\binom{k-2}{\bar{a}-1}(n-1)^{k-\bar{a}-1},
$$

that can be partitioned into $(n-1)^{\gamma}$ optimal $\mathrm{OA}_{\lambda /(\mathbf{n}-\mathbf{1})^{\gamma}}(\mathbf{k}, \mathbf{n})$.

- Suppose we take $k=16$ and $n=3$.
- Then $\bar{a}=5$ and $\gamma=2$.
- We obtain an optimal $\mathrm{OA}_{\lambda}(16,3)$, where

$$
\lambda=\binom{14}{4} 2^{8}
$$

Further Results

- Theorem 1 states that

$$
m \leq \frac{\lambda n^{2}}{k(n-1)+1}
$$

- Optimal OAs are OAs where we have equality, which can only occur if the expression the right side is an integer.
- In general, we have

$$
m \leq\left\lfloor\frac{\lambda n^{2}}{k(n-1)+1}\right\rfloor
$$

- An OA in which we have equality is termed m-optimal.
- We show that, if a "small" number of columns is deleted from an optimal OA, the result is an m-optimal OA.

Open Problems

- Find infinite classes of basic OAs with $n \geq 3$.
- Find improved "general" constructions for optimal OAs (i.e., find constructions with smaller λ values than the known constructions).
- Are there recursive constructions for optimal or basic OAs?

References

[1] C.J. Colbourn, D.R. Stinson and S. Veitch. Constructions of optimal orthogonal arrays with repeated rows. Discrete Mathematics, to appear, 2019.
[2] J.-F. Culus and S. Toulouse. How far from a worst solution a random solution of a k CSP instance can be? Lecture Notes in Computer Science 10979 (2018), 374-386 (IWOCA 2018).
[3] R. Mukerjee, P. Qian and J. Wu. On the existence of nested orthogonal arrays. Discrete Math. 308 (2008), 4635-4642.
[4] D.R. Stinson. Bounds for orthogonal arrays with repeated rows. Bulletin of the ICA 85 (2019), 60-73.

Thank You For Your Attention!

