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Definitions and a Bound

• Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers.

• An orthogonal array OAλ(k,n) is a λn2 by k array, A, with
entries from a set X of cardinality n such that, within any two
columns of A, every ordered pair of symbols from X occurs in
exactly λ rows of A.

• In this talk, we are interested in OAλ(k,n) that contain a
row that is repeated m times, where m is as large as possible.

Theorem 1
Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. If there is an OAλ(k,n)
containing a row that is repeated m times, then

m ≤ λn2

k(n− 1) + 1
.
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Comments

• Theorem 1 is a straightforward extension of the classical
Plackett-Burman bound for OAs of strength two. It improves
the Plackett-Burman bound by a factor of m.

• Note the resemblance to Mann’s inequality , which states that
b ≥ mv for a BIBD that contains a block of multiplicity m.
This improves Fisher’s inequality by a factor of m.

• A short proof of Theorem 1, based on the original proof of the
Plackett-Burman bound , is given in Stinson [4].

• The proof uses a standard “variance” technique.

• However this theorem is also an immediate corollary of a
much more general theorem of Mukerjee, Qian and Wu [3].
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Definitions and Background

• An OAλ(k,n) containing a row that is repeated

m =
λn2

k(n− 1) + 1
(1)

times will be termed optimal.

• Another way to view the optimality property is to observe that
the ratio m/λ is as large as possible in an optimal OA.

• We note that, in a recent paper, Culus and Toulouse [2]
discuss an application where it is beneficial to construct
optimal orthogonal arrays.

• They also construct several small examples of optimal OAs
using linear programs.
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Structural Properties

• Without loss of generality we can assume that the m-times
repeated row has the form x x · · ·x for any specified symbol x.

Theorem 2
Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. Suppose there is an
optimal OAλ(k,n), say A, containing a row x x · · ·x that is
repeated m times. Then every other row of A contains exactly
(k − 1)/n occurrences of the symbol x and thus k ≡ 1 mod n.

• Therefore, the following are necessary conditions for the
existence of an optimal OAλ(k,n) with an m-times repeated
row:

• k ≥ 2 and n ≥ 2,
• m = λn2

k(n−1)+1 , and

• a = k−1
n is a positive integer.
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Basic OAs
• An optimal OAλ(k,n) is basic if gcd(m,λ) = 1.
• A basic OA cannot consist of multiple copies of OAs with

smaller λ.
• As an example, we construct a basic OA3(5,2) from the

following two starting rows:

0 0 1 1 1
0 1 0 1 1

• We cyclically rotate these starting rows five times, and then
adjoin m = 2 rows of 0’s.

0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

0 0 0 0 0

0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
1 0 1 1 0

0 0 0 0 0
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Another Example of a Basic OA

• We construct a basic OA5(7,3) with m = 3.

• We have three starting rows, consisting of symbols from the
set {∞} ∪ Z2:

∞ ∞ 0 0 0 0 1
∞ 1 ∞ 0 1 1 0
∞ 1 1 ∞ 1 0 1

• First, cyclically rotate each starting row seven times.

• Then develop each row modulo 2 (the point ∞ is fixed).

• Finally, adjoin three rows of ∞’s.

• The resulting 3× 7× 2+3 = 45 rows form a basic OA5(7,3).
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Basic OAs with n = 2

Lemma 3
A basic OAλ(k,2) with m > 1 has m = 2, λ = 2t+ 1 and
k = 4t+ 1 for some positive integer t.

Proof.

• (k − 1)/n = (k − 1)/2 is an integer, so k = 2s+ 1.

• We have

m =
λn2

k(n− 1) + 1
=

4λ

k + 1
=

2λ

s+ 1
,

so 2λ = m(s+ 1).

• gcd(m,λ) = 1 so m = 1 or 2. But m > 1, so m = 2.

• Then λ = s+ 1.

• Since gcd(m,λ) = 1, s is even, so s = 2t.

• Then λ = 2t+ 1 and k = 4t+ 1.
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Basic OAs with n = 2 (cont.)

Theorem 4
There exists a basic OA2t+1(4t+ 1,2) if and only if there is a
(4t+ 1, 2t+ 1, 2t+ 1)-BIBD .

Proof.
(⇐) Let M be the b by v incidence matrix of the given BIBD.
Construct the matrix

A =

 0 0 · · · 0
0 0 · · · 0
M

 .

Then A is a basic OA2t+1(4t+ 1,2).
The other direction of the proof is similar.
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Constructing the Basic OAs with n = 2

Theorem 5
If there exists a Hadamard matrix of order 8t+ 4, then there exists
a (4t+ 1, 2t+ 1, 2t+ 1)-BIBD(and hence there exists a basic
OA2t+1(4t+ 1,2)).

Proof.
It is well-known that a Hadamard matrix of order 8t+ 4 is
equivalent to a symmetric (8t+ 3, 4t+ 1, 2t)-BIBD . The derived
BIBD is a (4t+ 1, 2t, 2t− 1)-BIBD . If we then complement every
block in this BIBD, we obtain a (4t+ 1, 2t+ 1, 2t+ 1)-BIBD .

10 / 17



A General Construction for Optimal OAs

• Suppose we are given values for k and n, where k ≥ n+ 1.

• Take all possible k-tuples that contain precisely a = (k − 1)/n
occurrences of 0, where 0 is one of the symbols.

• Then adjoin

m =
λn2

k(n− 1) + 1

rows of 0s, where

λ =

(
k − 2

a− 1

)
(n− 1)k−a−1.

• We obtain an optimal OAλ(k,n).

• For example, suppose k = 7 and n = 3. Then a = 2, λ = 80
and m = 48.

• The above-described process yields an optimal OA80(7,3).
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An Improvement

• It turns out that the optimal OAλ(k,n) described above can
be partitioned into n− 1 optimal OAλ/(n−1)(k,n).

• Relabel the points so that the m repeated rows each consist
of ∞∞· · ·∞.

• Take the n− 1 remaining symbols to be the elements of Zn−1.

• For any row r in this OA, say A, let s(r) denote the sum
modulo n− 1 of the non-infinite elements in this row.

• For any i ∈ Zn−1, let Ai consist of all the rows r of A such
that s(r) = i.

• Then each Ai is an optimal OAλ/(n−1)(k,n).
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A Further Improvement

Theorem 6
Suppose k ≥ n+ 1 and suppose a = (k − 1)/n is an integer.
Suppose

γ =

⌊
k

a+ 3

⌋
≥ 1.

Then there is an optimal OAλ(k,n), where

λ =

(
k − 2

a− 1

)
(n− 1)k−a−1,

that can be partitioned into (n− 1)γ optimal OAλ/(n−1)γ (k,n).

• Suppose we take k = 16 and n = 3.
• Then a = 5 and γ = 2.
• We obtain an optimal OAλ(16,3), where

λ =

(
14

4

)
28.
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Further Results

• Theorem 1 states that

m ≤ λn2

k(n− 1) + 1
.

• Optimal OAs are OAs where we have equality, which can only
occur if the expression the right side is an integer.

• In general, we have

m ≤
⌊

λn2

k(n− 1) + 1

⌋
.

• An OA in which we have equality is termed m-optimal.

• We show that, if a “small” number of columns is deleted from
an optimal OA, the result is an m-optimal OA.
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Open Problems

• Find infinite classes of basic OAs with n ≥ 3.

• Find improved “general” constructions for optimal OAs (i.e.,
find constructions with smaller λ values than the known
constructions).

• Are there recursive constructions for optimal or basic OAs?
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Thank You For Your Attention!
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