Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets, or All or nothing at all

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo
\section*{CanaDAM, Toronto, June 12-15, 2017}
In honour of the work of Alex Rosa

This talk is based on joint work with Navid Nasr Esfahani and Ian Goldberg.

All-or-nothing Transforms

- X is a finite set.
- s is a positive integer, and $\phi: X^{s} \rightarrow X^{s}$.
- ϕ is an unconditionally secure all-or-nothing transform provided that the following properties are satisfied:

1. ϕ is a bijection.
2. If any $s-1$ of the s output values y_{1}, \ldots, y_{s} are fixed, then the value of any one input value $x_{i}(1 \leq i \leq s)$ is completely undetermined.

- We will denote such a function as an (s, v)-AONT, where $v=|X|$.
- AONT were originally defined by Rivest (1997), motivated by an application to cryptography.

Linear AONT

- Let \mathbb{F}_{q} be a finite field of order q.
- An (s, q)-AONT defined on \mathbb{F}_{q} is linear if each y_{i} is an $\mathbb{F}_{q^{-}}$linear function of x_{1}, \ldots, x_{s}.

Theorem 1 (Stinson, 2000)
Suppose that q is a prime power and M is an invertible s by s matrix with entries from \mathbb{F}_{q}, such that no entry of M is equal to 0 . Then the function $\phi:\left(\mathbb{F}_{q}\right)^{s} \rightarrow\left(\mathbb{F}_{q}\right)^{s}$ defined by

$$
\phi(\mathrm{x})=\mathrm{x} M^{-1}
$$

is a linear (s, q)-AONT.

Example: Hadamard Matrices

- Suppose $p>2$ is prime, $s \equiv 0 \bmod 4$, and H is a Hadamard matrix of order s.
- $H H^{T}=s I_{s}$.
- Construct M by reducing the entries of H modulo p.
- M is invertible modulo p, and therefore M yields a linear $(s, p)-A O N T$.

A linear $(4,5)$-AONT:

$$
H=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \rightarrow M=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & 4 & 4 \\
1 & 4 & 1 & 4 \\
1 & 4 & 4 & 1
\end{array}\right)
$$

Example: Cauchy Matrices

- An s by s Cauchy matrix can be defined over \mathbb{F}_{q} if $q \geq 2 s$.
- Let $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}$ be distinct elements of \mathbb{F}_{q}.
- Let

$$
c_{i j}=\frac{1}{a_{i}-b_{j}}
$$

for $1 \leq i \leq s$ and $1 \leq j \leq s$.

- Then $C=\left(c_{i j}\right)$ is the Cauchy matrix defined by the sequence $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{s}$.
- A Cauchy matrix C is invertible, and all of its entries are non-zero, so C yields an (s, q)-AONT.

Generalized AONT

- Let $|X|=v$ and let $1 \leq t \leq s$.
- $\phi: X^{s} \rightarrow X^{s}$ is a t-all-or-nothing transform provided that the following properties are satisfied:

1. ϕ is a bijection.
2. If any $s-t$ of the s output values y_{1}, \ldots, y_{s} are fixed, then any t of the input values $x_{i}(1 \leq i \leq s)$ are completely undetermined.

- We will denote such a function ϕ as a (t, s, v)-AONT.
- The original definition corresponds to a 1-AONT.

Linear AONT

For an s by s matrix M with entries from \mathbb{F}_{q}, and for $I, J \subseteq\{1, \ldots, s\}$, define $M(I, J)$ to be the $|I|$ by $|J|$ submatrix of M induced by the columns in I and the rows in J.

Theorem 2 (D'Arco, Esfahani and Stinson, 2016)
Suppose that q is a prime power and M is an invertible s by s matrix with entries from \mathbb{F}_{q}, such that every t by t submatrix of M is invertible. Then the function $\phi:\left(\mathbb{F}_{q}\right)^{s} \rightarrow\left(\mathbb{F}_{q}\right)^{s}$ defined by

$$
\phi(\mathbf{x})=\mathbf{x} M^{-1}
$$

is a linear (t, s, q)-AONT.

Examples

A linear ($2,5,5$)-AONT:

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 3 \\
1 & 3 & 0 & 1 & 2 \\
1 & 2 & 3 & 0 & 1 \\
1 & 1 & 2 & 3 & 0
\end{array}\right)
$$

A linear ($2,7,7$)-AONT:

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 5 & 0 & 3 & 4 & 2 & 1 \\
1 & 4 & 3 & 0 & 5 & 1 & 2 \\
1 & 3 & 2 & 1 & 0 & 5 & 4 \\
1 & 2 & 4 & 5 & 1 & 0 & 3 \\
1 & 1 & 5 & 4 & 2 & 3 & 0
\end{array}\right) .
$$

Cauchy Matrices, Again

Any square submatrix of a Cauchy matrix is again a Cauchy matrix, and therefore it (the submatrix) is invertible. So we have the following result.

Theorem 3 (D'Arco, Esfahani and Stinson, 2016)
Suppose q is a prime power and $q \geq 2 s$. Then there is a linear transform that is simultaneously a (t, s, q)-AONT for all t such that $1 \leq t \leq s$.

So the open cases are for $q<2 s$. One particularly interesting question is "how large can s be as a function of q ?"

Reducing the Size s

Theorem 4
If there exists a linear (t, s, q)-AONT with $t<s$, then there exists a linear $(t, s-1, q)$-AONT.

Proof.
Let M be a matrix for a linear (t, s, q)-AONT. Consider all the s possible $s-1$ by $s-1$ submatrices formed by deleting the first column and a row of m. We claim that at least one of these s matrices is invertible. For, if they were all noninvertible, then M would be noninvertible, by considering the cofactor expansion with respect the first column of M.

A linear $(2, q+1, q)$-AONT Does Not Exist

From now on, we will focus mainly on the case $t=2$.

Theorem 5
There is no linear $(2, q+1, q)$-AONT for any prime power q.

Main question: for which prime powers q does there exist a linear (2,q,q)-AONT?

Computer Searches

We performed an exhaustive search for linear $(2, q, q)$-AONT for prime powers $q \leq 11$.

Table: Number of reduced and inequivalent linear $(2, q, q)$-AONT

q	reduced $(2, q, q)$-AONT	inequivalent $(2, q, q)$-AONT
3	2	1
4	3	2
5	38	5
7	13	1
8	0	0
9	0	0
11	21	1

Computer Searches (cont.)

For all odd primes $q \leq 23$, there exists a cyclic ($q-1$)-skew symmetric $(2, q, q)$-AONT. These were also found by computer. Here is an example for $q=11$:

$$
\left(\begin{array}{c|cccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 1 & 4 & 8 & 3 & 5 & 7 & 2 & 6 & 9 \\
1 & 9 & 0 & 1 & 4 & 8 & 3 & 5 & 7 & 2 & 6 \\
1 & 6 & 9 & 0 & 1 & 4 & 8 & 3 & 5 & 7 & 2 \\
1 & 2 & 6 & 9 & 0 & 1 & 4 & 8 & 3 & 5 & 7 \\
1 & 7 & 2 & 6 & 9 & 0 & 1 & 4 & 8 & 3 & 5 \\
1 & 5 & 7 & 2 & 6 & 9 & 0 & 1 & 4 & 8 & 3 \\
1 & 3 & 5 & 7 & 2 & 6 & 9 & 0 & 1 & 4 & 8 \\
1 & 8 & 3 & 5 & 7 & 2 & 6 & 9 & 0 & 1 & 4 \\
1 & 4 & 8 & 3 & 5 & 7 & 2 & 6 & 9 & 0 & 1 \\
1 & 1 & 4 & 8 & 3 & 5 & 7 & 2 & 6 & 9 & 0
\end{array}\right) .
$$

What is the Pattern?

order			
3	1		
5	1	2	3
7	25	3	14
11	1483	5	7269
13	1131054	6	87291
17	71146354	8	121113102159
19	86713321714	9	4116155111210
23	7141726341091	11	211312181916205815

Theoretical Results

Theorem 6
Suppose $q=2^{n}$ and $q-1$ is a (Mersenne) prime. Then there exists a linear $(2, q-1, q)$-AONT over \mathbb{F}_{q}.

Proof.
Let $\alpha \in \mathbb{F}_{q}$ be a primitive element and let $M=\left(m_{r, c}\right)$ be the $q-1$ by $q-1$ Vandermonde matrix in which $m_{r, c}=\alpha^{r c}$, for all r, c, $0 \leq r, c \leq q-1$.

Theoretical Results (cont.)

Theorem 7
For any prime power q, there is a q by q matrix defined over \mathbb{F}_{q} such that any 2 by 2 submatrix is invertible.

Proof.
$M=\left(m_{r, c}\right)$ be the q by q matrix of entries from \mathbb{F}_{q} defined by the rule $m_{r, c}=r+c$, where the sum is computed in \mathbb{F}_{q}.

The above-defined matrix is not invertible if $q>2$, so this construction does not yield an AONT.

General (Nonlinear or Linear) AONT

Theorem 8
Suppose there is a (t, s, v)-AONT. Then there is an $O A(t, s, v)$.
Proof.
Suppose we represent a (t, s, v)-AONT by a v^{s} by $2 s$ array denoted by A. Let R denote the rows of A that contain a fixed $(s-t)$-tuple in the last $s-t$ columns of A. Then $|R|=v^{t}$. Delete all the rows of A not in R and delete the last s columns of A. The resulting array, A^{\prime}, is an $\mathrm{OA}(t, s, v)$.

Corollary 9

Suppose there is a $(2, s, v)$-AONT. Then $s \leq v+1$.

This is slightly weaker than the bound $s \leq v$ that holds in the linear case.

References

[1] P. D'Arco, N. Nasr Esfahani and D. R. Stinson. All or nothing at all. Electronic Journal of Combinatorics 23(4) (2016), paper \#P4.10, 24 pp.
[2] N. Nasr Esfahani, lan Goldberg and D. R. Stinson. Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets. ArXiv report 1702.06612, Feb. 21, 2017.
[3] R. L. Rivest. All-or-nothing encryption and the package transform. Lecture Notes in Computer Science 1267 (1997), 210-218 (Fast Software Encryption 1997).
[4] D. R. Stinson. Something about all or nothing (transforms). Designs, Codes and Cryptography 22 (2001), 133-138.

Thank You For Your Attention!

