Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets, or All or nothing at all

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

CanaDAM, Toronto, June 12-15, 2017

In honour of the work of Alex Rosa

This talk is based on joint work with Navid Nasr Esfahani and Ian Goldberg.

All-or-nothing Transforms

- X is a finite set.
- s is a positive integer, and $\phi: X^s \to X^s$.
- ϕ is an unconditionally secure all-or-nothing transform provided that the following properties are satisfied:
 - 1. ϕ is a bijection.
 - 2. If any s-1 of the s output values y_1, \ldots, y_s are fixed, then the value of any one input value x_i $(1 \le i \le s)$ is completely undetermined.
- We will denote such a function as an (s, v)-AONT, where v = |X|.
- AONT were originally defined by Rivest (1997), motivated by an application to cryptography.

Linear AONT

- Let \mathbb{F}_q be a finite field of order q.
- An (s,q)-AONT defined on \mathbb{F}_q is linear if each y_i is an \mathbb{F}_q -linear function of x_1, \ldots, x_s .

Theorem 1 (Stinson, 2000)

Suppose that q is a prime power and M is an invertible s by s matrix with entries from \mathbb{F}_q , such that no entry of M is equal to 0. Then the function $\phi : (\mathbb{F}_q)^s \to (\mathbb{F}_q)^s$ defined by

 $\phi(\mathbf{x}) = \mathbf{x}M^{-1}$

is a linear (s, q)-AONT.

Example: Hadamard Matrices

- Suppose p > 2 is prime, $s \equiv 0 \mod 4$, and H is a Hadamard matrix of order s.
- $HH^T = sI_s$.
- Construct M by reducing the entries of H modulo p.
- M is invertible modulo p, and therefore M yields a linear $(s,p)\mbox{-}AONT.$

A linear (4, 5)-AONT:

Example: Cauchy Matrices

- An s by s Cauchy matrix can be defined over \mathbb{F}_q if $q \geq 2s$.
- Let $a_1, \ldots, a_s, b_1, \ldots, b_s$ be distinct elements of \mathbb{F}_q .
- Let

$$c_{ij} = \frac{1}{a_i - b_j},$$

for $1 \leq i \leq s$ and $1 \leq j \leq s$.

- Then $C = (c_{ij})$ is the Cauchy matrix defined by the sequence $a_1, \ldots, a_s, b_1, \ldots, b_s$.
- A Cauchy matrix C is invertible, and all of its entries are non-zero, so C yields an (s, q)-AONT.

Generalized AONT

- Let |X| = v and let $1 \le t \le s$.
- $\phi: X^s \to X^s$ is a *t*-all-or-nothing transform provided that the following properties are satisfied:
 - 1. ϕ is a bijection.
 - 2. If any s t of the s output values y_1, \ldots, y_s are fixed, then any t of the input values x_i $(1 \le i \le s)$ are completely undetermined.
- We will denote such a function ϕ as a (t, s, v)-AONT.
- The original definition corresponds to a 1-AONT.

Linear AONT

For an s by s matrix M with entries from \mathbb{F}_q , and for $I, J \subseteq \{1, \ldots, s\}$, define M(I, J) to be the |I| by |J| submatrix of M induced by the columns in I and the rows in J.

Theorem 2 (D'Arco, Esfahani and Stinson, 2016)

Suppose that q is a prime power and M is an invertible s by s matrix with entries from \mathbb{F}_q , such that every t by t submatrix of M is invertible. Then the function $\phi : (\mathbb{F}_q)^s \to (\mathbb{F}_q)^s$ defined by

$$\phi(\mathbf{x}) = \mathbf{x}M^{-1}$$

is a linear (t, s, q)-AONT.

Examples

A linear (2, 5, 5)-AONT:

$$\left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 \\ 1 & 2 & 3 & 0 & 1 \\ 1 & 1 & 2 & 3 & 0 \end{array}\right)$$

A linear (2, 7, 7)-AONT:

$$\left(\begin{array}{cccccccc} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 0 & 3 & 4 & 2 & 1 \\ 1 & 4 & 3 & 0 & 5 & 1 & 2 \\ 1 & 3 & 2 & 1 & 0 & 5 & 4 \\ 1 & 2 & 4 & 5 & 1 & 0 & 3 \\ 1 & 1 & 5 & 4 & 2 & 3 & 0 \end{array}\right)$$

•

Cauchy Matrices, Again

Any square submatrix of a Cauchy matrix is again a Cauchy matrix, and therefore it (the submatrix) is invertible. So we have the following result.

Theorem 3 (D'Arco, Esfahani and Stinson, 2016) Suppose q is a prime power and $q \ge 2s$. Then there is a linear transform that is simultaneously a (t, s, q)-AONT for all t such that $1 \le t \le s$.

So the open cases are for q < 2s. One particularly interesting question is "how large can s be as a function of q?"

Reducing the Size \boldsymbol{s}

Theorem 4

If there exists a linear (t, s, q)-AONT with t < s, then there exists a linear (t, s - 1, q)-AONT.

Proof.

Let M be a matrix for a linear (t, s, q)-AONT. Consider all the s possible s - 1 by s - 1 submatrices formed by deleting the first column and a row of m. We claim that at least one of these s matrices is invertible. For, if they were all noninvertible, then M would be noninvertible, by considering the cofactor expansion with respect the first column of M.

A linear (2, q + 1, q)-AONT Does Not Exist

From now on, we will focus mainly on the case t = 2.

Theorem 5 There is no linear (2, q + 1, q)-AONT for any prime power q.

Main question: for which prime powers q does there exist a linear (2, q, q)-AONT?

Computer Searches

We performed an exhaustive search for linear (2,q,q)-AONT for prime powers $q \leq 11.$

reduced (2, q, q)-AONT inequivalent (2, q, q)-AONT q

Table: Number of reduced and inequivalent linear (2, q, q)-AONT

Computer Searches (cont.)

For all odd primes $q \le 23$, there exists a cyclic (q - 1)-skew symmetric (2, q, q)-AONT. These were also found by computer. Here is an example for q = 11:

(0	1	1	1	1	1	1	1	1	1	1
	1	0	1	4	8	3	5	7	2	6	9
	1	9	0	1	4	8	3	5	7	2	6
	1	6	9	0	1	4	8	3	5	7	2
	1	2	6	9	0	1	4	8	3	5	7
	1	7	2	6	9	0	1	4	8	3	5
	1	5	7	2	6	9	0	1	4	8	3
	1	3	5	7	2	6	9	0	1	4	8
	1	8	3	5	7	2	6	9	0	1	4
	1	4	8	3	5	7	2	6	9	0	1
l	1	1	4	8	3	5	7	2	6	9	0 /

What is the Pattern?

order			
3		1	
5	1	2	3
7	2 5	3	14
11	1483	5	7269
13	11 3 10 5 4	6	87291
17	7 1 14 6 3 5 4	8	12 11 13 10 2 15 9
19	8 6 7 13 3 2 17 14	9	4 1 16 15 5 11 12 10
23	7 14 17 2 6 3 4 10 9 1	11	21 13 12 18 19 16 20 5 8 15

Theoretical Results

Theorem 6

Suppose $q = 2^n$ and q - 1 is a (Mersenne) prime. Then there exists a linear (2, q - 1, q)-AONT over \mathbb{F}_q .

Proof.

Let $\alpha \in \mathbb{F}_q$ be a primitive element and let $M = (m_{r,c})$ be the q-1 by q-1 Vandermonde matrix in which $m_{r,c} = \alpha^{rc}$, for all r, c, $0 \leq r, c \leq q-1$.

Theoretical Results (cont.)

Theorem 7

For any prime power q, there is a q by q matrix defined over \mathbb{F}_q such that any 2 by 2 submatrix is invertible.

Proof.

 $M = (m_{r,c})$ be the q by q matrix of entries from \mathbb{F}_q defined by the rule $m_{r,c} = r + c$, where the sum is computed in \mathbb{F}_q .

The above-defined matrix is not invertible if q > 2, so this construction does not yield an AONT.

General (Nonlinear or Linear) AONT

Theorem 8

Suppose there is a (t, s, v)-AONT. Then there is an OA(t, s, v).

Proof.

Suppose we represent a (t, s, v)-AONT by a v^s by 2s array denoted by A. Let R denote the rows of A that contain a fixed (s-t)-tuple in the last s-t columns of A. Then $|R| = v^t$. Delete all the rows of A not in R and delete the last s columns of A. The resulting array, A', is an OA(t, s, v).

Corollary 9

Suppose there is a (2, s, v)-AONT. Then $s \leq v + 1$.

This is slightly weaker than the bound $s \leq v$ that holds in the linear case.

References

- P. D'Arco, N. Nasr Esfahani and D. R. Stinson. All or nothing at all. *Electronic Journal of Combinatorics* 23(4) (2016), paper #P4.10, 24 pp.
- [2] N. Nasr Esfahani, Ian Goldberg and D. R. Stinson. Some results on the existence of *t*-all-or-nothing transforms over arbitrary alphabets. ArXiv report 1702.06612, Feb. 21, 2017.
- [3] R. L. Rivest. All-or-nothing encryption and the package transform. Lecture Notes in Computer Science 1267 (1997), 210–218 (Fast Software Encryption 1997).
- [4] D. R. Stinson. Something about all or nothing (transforms). Designs, Codes and Cryptography 22 (2001), 133–138.

Thank You For Your Attention!

