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All-or-nothing Transforms

• X is a finite set.

• s is a positive integer, and φ : Xs → Xs.

• φ is an unconditionally secure all-or-nothing transform
provided that the following properties are satisfied:

1. φ is a bijection.
2. If any s− 1 of the s output values y1, . . . , ys are fixed, then

the value of any one input value xi (1 ≤ i ≤ s) is completely
undetermined.

• We will denote such a function as an (s, v)-AONT , where
v = |X|.

• AONT were originally defined by Rivest (1997), motivated by
an application to cryptography.
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Linear AONT

• Let Fq be a finite field of order q.

• An (s, q)-AONT defined on Fq is linear if each yi is an
Fq-linear function of x1, . . . , xs.

Theorem 1 (Stinson, 2000)

Suppose that q is a prime power and M is an invertible s by s
matrix with entries from Fq, such that no entry of M is equal to 0.
Then the function φ : (Fq)

s → (Fq)
s defined by

φ(x) = xM−1

is a linear (s, q)-AONT.
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Example: Hadamard Matrices

• Suppose p > 2 is prime, s ≡ 0 mod 4, and H is a Hadamard
matrix of order s.

• HHT = sIs.

• Construct M by reducing the entries of H modulo p.

• M is invertible modulo p, and therefore M yields a linear
(s, p)-AONT .

A linear (4, 5)-AONT:

H =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

→M =


1 1 1 1
1 1 4 4
1 4 1 4
1 4 4 1

 .
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Example: Cauchy Matrices

• An s by s Cauchy matrix can be defined over Fq if q ≥ 2s.

• Let a1, . . . , as, b1, . . . , bs be distinct elements of Fq.

• Let

cij =
1

ai − bj
,

for 1 ≤ i ≤ s and 1 ≤ j ≤ s.

• Then C = (cij) is the Cauchy matrix defined by the sequence
a1, . . . , as, b1, . . . , bs.

• A Cauchy matrix C is invertible, and all of its entries are
non-zero, so C yields an (s, q)-AONT .
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Generalized AONT

• Let |X| = v and let 1 ≤ t ≤ s.

• φ : Xs → Xs is a t-all-or-nothing transform provided that the
following properties are satisfied:

1. φ is a bijection.
2. If any s− t of the s output values y1, . . . , ys are fixed, then

any t of the input values xi (1 ≤ i ≤ s) are completely
undetermined.

• We will denote such a function φ as a (t, s, v)-AONT .

• The original definition corresponds to a 1-AONT .
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Linear AONT

For an s by s matrix M with entries from Fq, and for
I, J ⊆ {1, . . . , s}, define M(I, J) to be the |I| by |J | submatrix of
M induced by the columns in I and the rows in J .

Theorem 2 (D’Arco, Esfahani and Stinson, 2016)

Suppose that q is a prime power and M is an invertible s by s
matrix with entries from Fq, such that every t by t submatrix of M
is invertible. Then the function φ : (Fq)

s → (Fq)
s defined by

φ(x) = xM−1

is a linear (t, s, q)-AONT.
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Examples
A linear (2, 5, 5)-AONT:

0 1 1 1 1
1 0 1 2 3
1 3 0 1 2
1 2 3 0 1
1 1 2 3 0


A linear (2, 7, 7)-AONT:

0 1 1 1 1 1 1
1 0 1 2 3 4 5
1 5 0 3 4 2 1
1 4 3 0 5 1 2
1 3 2 1 0 5 4
1 2 4 5 1 0 3
1 1 5 4 2 3 0


.
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Cauchy Matrices, Again

Any square submatrix of a Cauchy matrix is again a Cauchy
matrix, and therefore it (the submatrix) is invertible. So we have
the following result.

Theorem 3 (D’Arco, Esfahani and Stinson, 2016)

Suppose q is a prime power and q ≥ 2s. Then there is a linear
transform that is simultaneously a (t, s, q)-AONT for all t such
that 1 ≤ t ≤ s.

So the open cases are for q < 2s. One particularly interesting
question is “how large can s be as a function of q?”
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Reducing the Size s

Theorem 4
If there exists a linear (t, s, q)-AONT with t < s, then there exists
a linear (t, s− 1, q)-AONT.

Proof.
Let M be a matrix for a linear (t, s, q)-AONT . Consider all the s
possible s− 1 by s− 1 submatrices formed by deleting the first
column and a row of m. We claim that at least one of these s
matrices is invertible. For, if they were all noninvertible, then M
would be noninvertible, by considering the cofactor expansion with
respect the first column of M .
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A linear (2, q + 1, q)-AONT Does Not Exist

From now on, we will focus mainly on the case t = 2.

Theorem 5
There is no linear (2, q + 1, q)-AONT for any prime power q.

Main question: for which prime powers q does there exist a linear
(2, q, q)-AONT ?
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Computer Searches

We performed an exhaustive search for linear (2, q, q)-AONT for
prime powers q ≤ 11.

Table: Number of reduced and inequivalent linear (2, q, q)-AONT

q reduced (2, q, q)-AONT inequivalent (2, q, q)-AONT

3 2 1

4 3 2

5 38 5

7 13 1

8 0 0

9 0 0

11 21 1
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Computer Searches (cont.)

For all odd primes q ≤ 23, there exists a cyclic (q − 1)-skew
symmetric (2, q, q)-AONT . These were also found by computer.
Here is an example for q = 11:

0 1 1 1 1 1 1 1 1 1 1

1 0 1 4 8 3 5 7 2 6 9
1 9 0 1 4 8 3 5 7 2 6
1 6 9 0 1 4 8 3 5 7 2
1 2 6 9 0 1 4 8 3 5 7
1 7 2 6 9 0 1 4 8 3 5
1 5 7 2 6 9 0 1 4 8 3
1 3 5 7 2 6 9 0 1 4 8
1 8 3 5 7 2 6 9 0 1 4
1 4 8 3 5 7 2 6 9 0 1
1 1 4 8 3 5 7 2 6 9 0



.
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What is the Pattern?

order

3 1
5 1 2 3
7 2 5 3 1 4

11 1 4 8 3 5 7 2 6 9
13 11 3 10 5 4 6 8 7 2 9 1
17 7 1 14 6 3 5 4 8 12 11 13 10 2 15 9
19 8 6 7 13 3 2 17 14 9 4 1 16 15 5 11 12 10
23 7 14 17 2 6 3 4 10 9 1 11 21 13 12 18 19 16 20 5 8 15
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Theoretical Results

Theorem 6
Suppose q = 2n and q − 1 is a (Mersenne) prime. Then there
exists a linear (2, q − 1, q)-AONT over Fq.

Proof.
Let α ∈ Fq be a primitive element and let M = (mr,c) be the q− 1
by q − 1 Vandermonde matrix in which mr,c = αrc, for all r, c,
0 ≤ r, c ≤ q − 1.
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Theoretical Results (cont.)

Theorem 7
For any prime power q, there is a q by q matrix defined over Fq

such that any 2 by 2 submatrix is invertible.

Proof.
M = (mr,c) be the q by q matrix of entries from Fq defined by the
rule mr,c = r + c, where the sum is computed in Fq.

The above-defined matrix is not invertible if q > 2, so this
construction does not yield an AONT.
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General (Nonlinear or Linear) AONT

Theorem 8
Suppose there is a (t, s, v)-AONT. Then there is an OA(t, s, v).

Proof.
Suppose we represent a (t, s, v)-AONT by a vs by 2s array
denoted by A. Let R denote the rows of A that contain a fixed
(s− t)-tuple in the last s− t columns of A. Then |R| = vt. Delete
all the rows of A not in R and delete the last s columns of A. The
resulting array, A′, is an OA(t, s, v).

Corollary 9

Suppose there is a (2, s, v)-AONT. Then s ≤ v + 1.

This is slightly weaker than the bound s ≤ v that holds in the
linear case.
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Thank You For Your Attention!

19 / 19


