Optimal Ramp Schemes and Related Combinatorial Objects

Douglas R. Stinson
David R. Cheriton School of Computer Science University of Waterloo
BCC 2017, Glasgow, July 3-7, 2017

(t, n)-Threshold Schemes

- We informally define a (t, n)-threshold scheme
- Let t and n be positive integers, $t \leq n$.
- A secret value K is "split" into n shares, denoted s_{1}, \ldots, s_{n}.
- The following two properties should hold:

1. The secret can be reconstructed, given any t of the n shares.
2. No $t-1$ shares reveal any information as to the value of the secret.

- Threshold schemes were invented independently by Blakley and Shamir in 1979.
- Shamir's threshold scheme is based on polynomial interpolation over \mathbb{Z}_{p}, where $p \geq n+1$ is prime.

Shamir Threshold Scheme

- The set of possible secrets (and shares) is \mathbb{Z}_{p}.
- $x_{1}, x_{2}, \ldots, x_{n}$ are defined to be n public, distinct, non-zero elements of \mathbb{Z}_{p}.
- For a given secret $K \in \mathbb{Z}_{p}$, shares are created as follows:

1. Let $a(x) \in \mathbb{Z}_{p}[x]$ be a random polynomial of degree at most $t-1$, such that the constant term is the secret, K.
2. For $1 \leq i \leq n$, the share $s_{i}=a\left(x_{i}\right)$ (so the shares are evaluations of the polynomial $a(x)$ at n non-zero points).

- Suppose we have t shares $s_{i_{j}}=a\left(x_{i_{j}}\right), 1 \leq j \leq t$.
- Since $a(x)$ is a polynomial of degree at most $t-1$, we can determine $a(x)$ by Lagrange interpolation; then $K=a(0)$.

Ideal Threshold Schemes

- Suppose \mathcal{K} is the set of possible secrets and \mathcal{X} is the set of possible shares for any (t, n) threshold scheme
- Then $|\mathcal{K}| \leq|\mathcal{X}|$.
- If equality holds, then the threshold scheme is ideal.
- Clearly the Shamir scheme is ideal.
- We observe that the Shamir scheme is basically a Reed-Solomon code in disguise.
- Reed-Solomon codes are examples of maximum distance separable codes, which are equivalent to orthogonal arrays with index 1.

Ideal Threshold Schemes and Orthogonal Arrays

An orthogonal array with index 1 , denoted $\mathrm{OA}(t, k, v)$, is a v^{t} by k array A defined on an alphabet \mathcal{X} of cardinality v, such that any t of the k columns of A contain all possible k-tuples from \mathcal{X}^{t} exactly once.

Theorem 1 (Keith Martin, 1991)
There exists an ideal (t, k)-threshold scheme with v possible shares (and v possible secrets) if and only if there exists an $\mathrm{OA}(t, k+1, v)$.

Proof Ideas

- Suppose A is an $\mathrm{OA}(t, k+1, v)$.
- The first k columns are associated with the k players and the last column corresponds to the secret.
- Each row of A gives rise to a distribution rule which assigns shares corresponding to a particular value of the secret to the k players.
- The result is easily seen to be an ideal threshold scheme.

Proof Ideas

- Suppose A is an $\mathrm{OA}(t, k+1, v)$.
- The first k columns are associated with the k players and the last column corresponds to the secret.
- Each row of A gives rise to a distribution rule which assigns shares corresponding to a particular value of the secret to the k players.
- The result is easily seen to be an ideal threshold scheme.
- Conversely, suppose we start with a (t, k)-threshold scheme with shares from an alphabet of size v.
- WLOG, suppose $\mathcal{K}=\mathcal{X}$.
- Write out all the possible distribution rules (which can be regarded as $(k+1)$-tuples) as rows of an array.
- With a bit of work, the resulting array can be shown to be an $\mathrm{OA}(t, k+1, v)$.

Example

We present an $\mathrm{OA}(2,4,3)$, which gives rise to a $(2,3)$-threshold scheme with shares and secrets in \mathbb{Z}_{3}. There are nine distribution rules, three for each possible value of the secret.

s_{1}	s_{2}	s_{3}	K
0	0	0	0
1	1	1	0
2	2	2	0
0	1	2	1
1	2	0	1
2	0	1	1
0	2	1	2
1	0	2	2
2	1	0	2

(Ideal) Ramp Schemes

- An (s, t, n)-ramp scheme is a generalization of a threshold scheme in which there are two thresholds s and t, where $s<t$.

1. The secret can be reconstructed given any t of the n shares.
2. No s shares reveal any information as to the value of the secret.

- If $s=t-1$, then we have a threshold scheme.
- Ramp schemes weaken the security requirement, but permit larger secrets to be shared for a given share size.
- If \mathcal{K} is the set of possible secrets and \mathcal{X} is the set of possible shares for any (s, t, n)-ramp scheme, then $|\mathcal{K}| \leq|\mathcal{X}|^{t-s}$.
- If equality holds, then the ramp scheme is ideal.

Orthogonal Arrays and Ideal Ramp Schemes

- It is easy to construct an ideal ramp scheme from an orthogonal array.
- Suppose A is an $\mathrm{OA}(t, k+t-s, v)$.
- The first k columns are associated with the k players and the last $t-s$ columns correspond to the secret.
- Main question: Is the converse true?
- Jackson and Martin (1996) showed that a strong ideal ramp scheme implies the existence of an $\mathrm{OA}(t, k+t-s, v)$.
- However, the additional properties that define a strong ideal ramp scheme are rather technical, and not particularly natural.
- We give a new, "tight" characterization of "general" ideal ramp schemes, and we construct examples of ideal ramp schemes that are not strong, answering a question from Jackson and Martin (1996).

Augmented Orthogonal Arrays

Definition 2

An augmented orthogonal array, denoted $\mathrm{AOA}(s, t, k, v)$, is a v^{t} by $k+t-s$ array A that satisfies the following properties:

1. the first k columns of A form an orthogonal array $\mathrm{OA}(t, k, v)$ on a symbol set \mathcal{X} of size v
2. the last column of A contains symbols from a set \mathcal{Y} of size v^{t-s}
3. any s of the first k columns of A, together with the last column of A, contain all possible $(s+1)$-tuples from $\mathcal{X}^{s} \times Y$ exactly once.

Example

- We give an example of an $\operatorname{AOA}(1,3,3,3)$.
- Take $\mathcal{X}=\mathbb{Z}_{3}$ and $\mathcal{Y}=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
- The AOA is generated by the following matrix:

$$
M=\left(\begin{array}{lll|l}
1 & 0 & 0 & (1,1) \\
0 & 1 & 0 & (1,0) \\
0 & 0 & 1 & (0,1)
\end{array}\right) .
$$

- The first three columns generate all 27 triples over \mathbb{Z}_{3}.
- Any one of the first three columns, together with the last column, generate all 27 ordered pairs from $\mathbb{Z}_{3} \times\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$.

Main Equivalence Theorem

Theorem 3
There exists an ideal (s, t, n)-ramp scheme defined over a set of v shares if and only if there exists an $\mathrm{AOA}(s, t, n, v)$.

Theorem 4
If there exists an $\mathrm{OA}(t, k+t-s, v)$, then there exists an $\mathrm{AOA}(s, t, k, v)$.

Proof.
Merge the last $t-s$ columns of an $\mathrm{OA}(t, k+t-s, v)$ to form a single column whose entries are $(t-s)$-tuples of symbols.

Ramp Schemes and (Augmented) Orthogonal Arrays

Summarizing, we have the following equivalences/implications:
strong ideal (s, t, n)-ramp scheme defined over a set of v shares

$$
\Longleftrightarrow \mathrm{OA}(t, n+t-s, v)
$$

> ideal (s, t, n)-ramp scheme defined over a set of v shares

$$
\Longleftrightarrow \quad \mathrm{AOA}(s, t, n, v)
$$

OAs vs AOAs

- The converse of Theorem 4 is not always true.
- Consider the $\operatorname{AOA}(1,3,3,3)$ presented earlier.
- Suppose we split the last column into two columns of elements from \mathbb{Z}_{3}.
- We would get an array generated by the following matrix:

$$
M=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- The fourth column of M is the sum of the first two columns of M, so these three corresponding columns generated by M will not contain all possible 3 -tuples.
- In fact, there does not exist any $\mathrm{OA}(3,5,3)$, because the parameters violate the classical Bush bound.
- So we get an example of parameters for which an ideal ramp scheme exists but a strong ideal ramp scheme does not exist.

OAs vs AOAs: Two General Results

Theorem 5
Suppose q is an odd prime power and $3 \leq t \leq q$. Then there exists an $\mathrm{AOA}(1, t, q, q)$ but there does not exist an $\mathrm{OA}(t, q+t-1, q)$.

Theorem 6
Suppose q is a prime power and $s \leq q-1$. Then there exists an $\mathrm{AOA}(s, q+1, q+1, q)$ but there does not exist an $\mathrm{OA}(q+1,2(q+1)-s, q)$.

Example

We take $q=3, s=2$ in Theorem 6. Let

$$
N=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

This array generates a (linear) $\mathrm{OA}(2,4,3)$.
Then the following array generates a (linear) $\mathrm{AOA}(2,4,4,3)$:

$$
M=\left(\begin{array}{llll|l}
1 & 0 & 0 & 0 & (1,0) \\
0 & 1 & 0 & 0 & (1,1) \\
0 & 0 & 1 & 0 & (1,2) \\
0 & 0 & 0 & 1 & (0,1)
\end{array}\right)
$$

However, by the Bush bound, there is no $\operatorname{OA}(4,6,3)$.

References

[1] W.A. Jackson and K.M. Martin. A combinatorial interpretation of ramp schemes. Australasian Journal of Combinatorics 14 (1996), 51-60.
[2] K.M. Martin. Discrete Structures in the Theory of Secret Sharing. PhD Thesis, University of London, 1991.
[3] A. Shamir. How to share a secret. Communications of the ACM 22 (1979), 612-613.
[4] D.R. Stinson. Optimal ramp schemes and related combinatorial objects. ArXiv report 1705.06247, May 17, 2017.

Thank You For Your Attention!

