# Multicollision attacks on iterated hash functions

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

Fourth Pythagorean Conference Corfu, Greece Friday, June 4, 2010

## references and summary

This talk is based on joint work with Mridul Nandi and Jalaj Upadhyay:

- M. Nandi and D.R. Stinson. Multicollision attacks on some generalized sequential hash functions. *IEEE Transactions on Information Theory* 53 (2007), 759–767.
- D.R. Stinson and J. Upadhyay. On the complexity of the herding attack and some related attacks on hash functions. IACR ePrint 2010/30.

I will talk about two recent results on multicollision attacks for hash functions:

- 1. a generalization of Joux's multicollision attack to a wide variety of hash functions, and
- a second look at constructing diamond structures, which were invented by Kelsey and Kohno to use in their herding attacks on iterated hash functions.

#### hash functions

- Typically, a hash function takes a "long" input string and produces a random-looking "short" output string called a message digest.
- Hash functions have been used for many years in computer science to create hash tables for efficient methods for information retrieval.
- In this context, it is important that collisions occur as infrequently as possible, where a collision for a hash function hash is a pair of distinct inputs x, x' such that hash(x') = hash(x).
- Hash functions are also used frequently in cryptography, where additional properties are required. Such hash functions are termed cryptographic hash functions.
- A cryptographic hash function maps an arbitrary-length input string to a fixed-length output string: hash: {0,1}\* → {0,1}<sup>n</sup>.

## three security properties of hash functions

#### **Collision resistance**

```
It should be difficult to find x, x' \in \{0, 1\}^* such that x' \neq x and \displaystyle \frac{hash}{x'} = \frac{hash}{x}. (Here, x and x' collide.)
```

#### Preimage resistance

```
Given z \in \{0,1\}^n, it should be difficult to find x \in \{0,1\}^* such that hash(x) = z. (Here, x is a preimage of z.)
```

#### Second preimage resistance

```
Given x \in \{0,1\}^*, it should be difficult to find x' \in \{0,1\}^* such that x' \neq x and hash(x') = hash(x). (Here, x' is a second preimage of h(x).)
```

## difficulty of the three problems

- Suppose we postulate the existence of an "ideal" hash function that outputs a random value hash(x) for every input x.
- Such a hash function is called a random oracle.
- It is easy to analyse the difficulty of the three problems in the random oracle model.
- Preimages and Second preimages can be found by exhaustive search in expected time  $\Theta(2^n)$ .
- Collisions can be found using the birthday paradox in expected time  $\Theta(2^{n/2})$ .
- When we construct a "real" hash function, our goal is that
  the three problems cannot be solved more quickly than in the
  ideal case (but proving things like this are extremely difficult!).

#### multicollisions

- There has been recent interest in studying the difficulty of finding multicollisions in hash functions.
- A  $\gamma$ -multicollision is a  $\gamma$ -subset  $\{x_1, \ldots, x_\gamma\} \subseteq \{0, 1\}^*$  such that  $hash(x_1) = hash(x_2) = \cdots = hash(x_\gamma)$ .
- It is commonly asserted that the complexity of finding a  $\gamma$ -multicollision in the random oracle model is  $\Theta(2^{n(\gamma-1)/\gamma})$ .
- Using estimates due to Diaconis and Mosteller (1989), Nandi and Stinson observed that the true complexity is  $\Theta(\gamma 2^{n(\gamma-1)/\gamma})$ .
- For additional, more detailed analysis along these lines, see Suzuki, Tonien, Kurosawa, and Toyota (2008).

#### iterated hash functions

- The most common design strategy for hash functions is the iterated hash function.
- MD4, MD5, and SHA-1 are all iterated hash functions.
- We need a padding function, which takes an input string x, where  $|x| \ge n + t + 1$ , and constructs a "padded" string y, such that  $|y| \equiv 0 \bmod t$ .
- We also need a compression function,  $compress: \{0,1\}^{n+t} \rightarrow \{0,1\}^n$ .
- IV is a public initial value which is a bitstring of length n.

## constructing an iterated hash function

#### preprocessing step

Given x, construct the padded string y, where  $|y| \equiv 0 \mod t$ . Denote

$$y = y_1 \parallel y_2 \parallel \cdots \parallel y_r,$$

where  $|y_i| = t$  for  $1 \le i \le r$ . The  $y_i$ 's are called message blocks.

#### processing step

Compute the following chaining values:

$$z_{0} \leftarrow IV$$

$$z_{1} \leftarrow compress(z_{0} \parallel y_{1})$$

$$\vdots \quad \vdots \quad \vdots$$

$$z_{r} \leftarrow compress(z_{r-1} \parallel y_{r}).$$

#### output

Define 
$$h(x) = z_r$$
.

## constructing an iterated hash function



### Joux's multicollision attack

- Joux (2004) discovered a simple multicollision attack on iterated hash functions.
- The expected complexity to find a  $2^r$ -multicollision is  $\Theta(r \, 2^{n/2})$ , which is much smaller than the birthday attack having complexity  $\Theta(2^r \times 2^{n(2^r-1)/2^r})$ .
- The idea is to find r successive collisions in the compression function, each of which requires time  $\Theta(2^{n/2})$  to find.
- For  $z,z'\in\{0,1\}^n$  and  $y\in\{0,1\}^t$ , we use the notation  $z\xrightarrow{y}z'$  (a labelled arc) to mean compress(z,y)=z', where |z|=|z'|=n and |y|=t.
- We can extend this notation in a natural way to incorporate multiple message blocks, e.g.,  $z \xrightarrow{y_1, y_2, y_3} z'$ .

## Joux's multicollision attack (cont.)

$$\begin{array}{lll} z_0 \xrightarrow{y_1^1} z_1 & \text{ and } & z_0 \xrightarrow{y_1^2} z_1 & \text{ for some } z_1 \text{, where } y_1^1 \neq y_1^2 \\ z_1 \xrightarrow{y_2^1} z_2 & \text{ and } & z_1 \xrightarrow{y_2^2} z_2 & \text{ for some } z_2 \text{, where } y_2^1 \neq y_2^2 \\ & \vdots & & & \\ z_{r-1} \xrightarrow{y_r^1} z_r & \text{ and } & z_{r-1} \xrightarrow{y_r^2} z_r & \text{ for some } z_r \text{, where } y_r^1 \neq y_r^2. \end{array}$$

Then the set

$$\{y_1^1, y_1^2\} \times \{y_2^1, y_2^2\} \times \dots \times \{y_r^1, y_r^2\}$$

is a  $2^r$ -multicollision:



Question: Can Joux's attack be generalised to other types of hash functions?

## generalised iterated hash functions

- hash twice uses every message block twice:  $\frac{hashtwice}{hash}(y) = \frac{hash}{hash}(IV,y), y) \text{ where } y \text{ is the padded message}.$
- That is, we process the message blocks in the order  $y_1, \dots, y_r, y_1, \dots, y_r$ .
- zipper hash processes the message blocks in the order  $y_1, \dots, y_r, y_r, \dots, y_1$ .
- Let  $S = \{1, 2, \dots, r\}$  denote the set of indices of the r message blocks.
- A generalised sequential hash function (GSHF) is based on a sequence  $\alpha = \langle \alpha_1, \dots, \alpha_s \rangle$  where  $\alpha_i \in \mathcal{S}$  for all i.
- The GSHF based on  $\alpha$  is defined as follows:

$$z_0 = IV$$
  
 $z_i = compress(z_{i-1}, y_{\alpha_i}), 1 \le i \le s.$ 

## a partial order relation

- We define a relation on the symbol set S.
- For  $x, x' \in \mathcal{S}$ ,  $x \neq x'$ , define  $x \prec x'$  if every occurrence of x in  $\alpha$  precedes every occurrence of x' in  $\alpha$ .
- The relation "¬¬" is antisymmetric and transitive; hence "¬¬" is a partial order.
- Two symbols  $x \neq x'$  are incomparable if it is not the case that  $x \prec x'$  or  $x' \prec x$ .
- A list of symbols  $x_1, \ldots, x_d$  is a chain if  $x_1 \prec x_2 \prec \cdots \prec x_d$ .
- A set of chains is a chain decomposition if the chains are disjoint and their union is S.

#### an attack based on a chain

 We present an attack on the hash function based on the sequence

$$\alpha = \langle 1, 2, 1, 3, 2, 4, 3, 5, 4, 5 \rangle$$

- Note that  $1 \prec 3 \prec 5$  is a chain.
- We decompose  $\alpha$  into three subsequences:

$$\langle 1, 2, 1 \rangle, \langle 3, 2, 4, 3 \rangle, \langle 5, 4, 5 \rangle$$

- Define  $y_2 = y_4 = y^*$  for some arbitrary t-bit string  $y^*$ .
- The attack consists of three successive birthday attacks:

$$z_0 \xrightarrow{y_1^1, y^*, y_1^1} z_1 \quad \text{and} \quad z_0 \xrightarrow{y_1^2, y^*, y_1^2} z_1$$

$$z_1 \xrightarrow{y_3^1, y^*, y^*, y_3^1} z_2 \quad \text{and} \quad z_1 \xrightarrow{y_3^2, y^*, y^*, y_3^2} z_2$$

$$z_2 \xrightarrow{y_5^1, y^*, y_5^1} z_3 \quad \text{and} \quad z_2 \xrightarrow{y_5^2, y^*, y_5^2} z_3$$

• We get a  $2^3$ -multicollision with collision value  $z_3$ .

#### an attack based on an initial interval

- For hash twice, we have  $\alpha=\langle 1,2,\ldots,r,1,2,\ldots,r\rangle$ , which does not have a chain of length longer than 1.
- We have another approach, based on the fact that the first r message blocks to be processed are all different.
  - (1) Use Joux's multicollision attack to find a  $2^r$ -multicollision  $\mathcal C$  for the first r message blocks.
  - (2) Let r=uv for "appropriate" u and v. Divide the index interval [r+1,2r] into u equal intervals, each of size v. For  $i=1,\ldots,u$ , (if possible) use a standard birthday attack to find two v-tuples from the appropriate part of  $\mathcal C$  which collide.
  - (3) Provided that the u birthday attacks in step (2) all succeed, we get a multicollision set (of size  $2^u$ ) for hash twice.

## combining the two attacks

We consider sequences in which every symbol occurs at most twice.

The next theorem follows from Dilworth's Theorem, which states that for any a partial order " $\prec$ " on a finite set  $\mathcal{S}$ , the maximum number of mutually incomparable elements in  $\mathcal{S}$  is equal to the minimum number of chains in any chain decomposition.

#### Theorem (Nandi and Stinson (2007))

Let  $\alpha$  be a sequence of elements from symbol set  $\mathcal{S}=\{1,\ldots,r\}$  such that  $1\leq \operatorname{freq}(x,\alpha)\leq 2$  for all  $x\in\mathcal{S}$ . Suppose that  $r\geq r_1r_2$ . Then one of the following holds:

- 1.  $\operatorname{maxchain}(\alpha) \geq r_1$ , or
- **2.** there exists an initial interval [1, w] such that  $\alpha[1, w]$  contains at least  $r_2$  symbols each having frequency 1.

These attacks have subsequently been extended by Hoch and Shamir (2006) to sequences where each symbol occurs at most c times, for some fixed positive integer c.

## proof sketch

- Let  $\rho_1 = \operatorname{maxchain}(\alpha)$ .
- If  $\rho_1 \geq r_1$ , we're done.
- Otherwise, when  $\rho_1 < r_1$ , let  $\rho_2$  denote the maximum number of incomparable elements.
- By Dilworth's Theorem, there is a chain decomposition having  $\rho_2$  chains.
- Each chain has length at most  $\rho_1$ , so

$$\rho_2 \ge n/\rho_1 > n/r_1 \ge r_2.$$

- Take an initial subsequence of  $\alpha$  that contains the first occurrences of the  $\rho_2$  incomparable elements.
- This works precisely because these elements are incomparable.

## the herding attack

Kelsey and Kohno (2006) described the following hash function property, presented as a game between an attacker and a challenger:

#### Chosen-target-forced-prefix resistance

An attacker commits to a message digest, z, and is then challenged with a prefix, P. It should be infeasible for the attacker to be able to find a suffix S such that  $hash(P \parallel S) = z$ .

- Intuitively, it does not seem that a chosen-target-forced-prefix attack should be easier than finding a preimage, which generally takes time  $\Theta(2^n)$ .
- An attack that violates CTFP resistance is often called a herding attack.
- Kelsey and Kohno described a herding attack on iterated hash functions using a precomputed data structure called a diamond structure.

#### diamond structures

- First we'll talk about diamond structures; we'll present the herding attack a bit later.
- A 2<sup>k</sup>-diamond structure contains a complete binary tree of depth k.
- There are  $2^{k-\ell}$  nodes at level  $\ell$ , for  $k \geq \ell \geq 0$ .
- There is also a single node at level -1, which we will call the source node.
- The source node is joined to every node at level 0.
- The nodes at level 0 are called the leaves of the diamond structure and the node at level k is called the root of the tree.

## diamond structures (cont.)

Here is a diagram of a  $2^3$  diamond structure:



## diamond structures (cont.)

- Every edge e in the diamond structure is labeled by a string  $\sigma(e)$  which consists of one or more message blocks.
- We also assign a label h(N) to every node N in the structure at level at least 0, as follows:
- Consider the unique directed path P from the source node to the node N in the diamond structure.
- P will consist of some edges  $e_0e_1\cdots e_\ell$ , where N is at level  $\ell$  in the tree. Then we define

$$h(N) = hash(\sigma(e_0) \parallel \sigma(e_1) \parallel \cdots \parallel \sigma(e_\ell)).$$

- At any level  $\ell$  of the structure there are  $2^{k-\ell}$  hash values.
- These must be paired up in such a way that, when the next message blocks are appended,  $2^{k-\ell-1}$  collisions occur.
- Thus there are  $2^{k-\ell-1}$  hash values at the next level.
- The entire structure yields a  $2^k$ -multicollision.

## building a diamond structure

- A diamond structure is constructed one level at a time.
- We describe how to construct the nodes at level 1.
- For each of the  $2^k$  nodes at level 0, construct a list of L random message blocks and compute the relevant hashes.
- Look for collisions in different lists and try to find  $2^{k-1}$  disjoint pairs of collisions.
- For example, suppose  $k=2,\,L=4$  and n=4, and we get the following lists of hash values:

```
List 1: 0011 1011 0101 1100
List 2: 0010 1000 1010 0001
List 3: 0101 0001 1111 0000
List 4: 1110 1101 1011 1001
```

 Then we can pair up lists 1 and 4 (having collision 1011) and lists 2 and 3 (having collision 0001).

## Kelsey and Kohno's analysis

#### Kelsey and Kohno argued as follows:

The work done to build the diamond structure is based on how many messages must be tried from each of  $2^k$ starting values, before each has collided with at least one other value. Intuitively, we can make the following argument, which matches experimental data for small parameters: When we try  $2^{n/2+k/2+1/2}$  messages spread out from  $2^k$  starting hash values (lines), we get  $2^{n/2+k/2+1/2-k}$  messages per line, and thus between any pair of these starting hash values, we expect about  $(2^{n/2+k/2+1/2-k})^2 \times 2^{-n} = 2^{n+k+1-2k-n} = 2^{-k+1}$ collisions. We thus expect about  $2^{-k+k+1} = 2$  other hash values to collide with any given starting hash value.

## the flaw in the analysis

Unfortunately, this line of reasoning does not imply that the  $2^k$  nodes can be paired up in such a way that we get  $2^{k-1}$  collisions:

## the flaw in the analysis

Unfortunately, this line of reasoning does not imply that the  $2^k$  nodes can be paired up in such a way that we get  $2^{k-1}$  collisions:



"I think you should be more explicit here in step two."

## random graph formulation

- It is useful to think of this problem in a graph-theoretic setting.
- Suppose we label the nodes as  $1, 2, \ldots, 2^k$ .
- Then we construct a graph  $\mathcal{G}=(\mathcal{V},\mathcal{E})$ , where the vertex set is  $\mathcal{V}=\{v_1,\ldots,v_{2^k}\}$  and  $(v_i,v_j)\in\mathcal{E}$  if the nodes  $v_i$  and  $v_j$  collide at the next level of the diamond structure.
- Let  $\mathcal{G}(\nu, p)$  denote a random graph on  $\nu$  labelled vertices, obtained by selecting each pair of vertices to be an edge randomly and independently with a fixed probability p.
- Based on the analysis given above, we see that the graph  $\mathcal{G}$  is precisely a random graph in  $\mathcal{G}(2^k, 2^{-k+1})$ .
- Now, the question is if this random graph contains a perfect matching, as this is precisely what is required in order to be able to find the desired  $2^{k-1}$  pairs of collisions.

## threshold functions for random graphs

- As p increases from 0 to 1, a random graph in  $\mathcal{G}(\nu,p)$  becomes more and more dense.
- Many natural monotone graph-theoretic properties become true within a very small range of values of p.
- Given a monotone graph-theoretic property, there is typically a value of p (which will be a function  $t(\nu)$  depending on  $\nu$ , the number of vertices) called the called threshold function.
- The given property holds in the model  $\mathcal{G}(\nu,p)$  with probability close to 0 for  $p < t(\nu)$ , and the property holds with probability close to 1 for  $p > t(\nu)$ .
- A threshold function for having a perfect matching is any function having the form

$$t(\nu) = \frac{\ln \nu + f(\nu)}{\nu}$$

for any  $f(\nu)$  such that  $\lim_{\nu\to\infty} f(\nu) = \infty$ .

## fixing the analysis

- $\mathcal{G}(2^k, 2^{-k+1})$  has  $p = 2/\nu$ , which is much lower than required threshold, so the Kelsey-Kohno analysis is not valid.
- We assume a random graph in  $\mathcal{G}(\nu, \ln \nu/\nu)$  has a perfect matching.
- We construct  $\nu = 2^k$  lists, each containing L messages.
- The probability that any two given messages collide is  $2^{-n}$ . The probability that there is at least one collision between two given lists is  $p \approx L^2/2^n$ .
- We want  $p \approx \ln \nu / \nu$ , so we take

$$L \approx \sqrt{k \ln 2} \times 2^{(n-k)/2} \approx 0.83 \times \sqrt{k} \times 2^{(n-k)/2}$$

 The message complexity (i.e., the number of hash computations) at level 0 is therefore

$$2^k L \approx 0.83 \times \sqrt{k} \times 2^{(n+k)/2}.$$

## fixing the analysis (cont.)

- Ignoring constant factors, this is a factor of about  $\sqrt{k}$  bigger than the estimate in Kelsey-Kohno.
- The lower levels of the diamond structure are analysed in a similar way, replacing k by k-1,k-2, etc.
- The total message complexity is also  $\Theta(\sqrt{k} \times 2^{(n+k)/2})$ .
- Thus we obtain a rigourous analysis (in the random oracle model) with a precise estimate of the message complexity.
- Overall, it turns out that Kelsey and Kohno's estimate (for the entire structure) was too small by a factor of  $\sqrt{k}$ .
- Note this has some effect on various other attacks in the literature that make use of diamond structures.

## Kelsey-Kohno's herding attack

- First, we construct a diamond structure with k levels.
- We commit to the hash value z = h(root) and the challenger provides a prefix P.
- We choose random strings T until we find a linking message, i.e., a string T such that  $hash(P \parallel T) = h(N)$  for some node N in the diamond structure.
- This takes, on average,  $2^{n-k-1}$  attempts.
- Once we have found the linking message T, construct S by concatenating T with the message blocks in the diamond structure on the path from N to root.
- The total complexity of the attack is  $\Theta(2^{n-k} + \sqrt{k} \times 2^{(n+k)/2})$ .
- The value of k can be chosen as desired. If  $k \approx n/3$ , then the message complexity of the attack is about  $\Theta(\sqrt{n} \times 2^{2n/3})$ , which is a significant improvement over  $\Theta(2^n)$ .

# Kelsey-Kohno's herding attack (cont.)

A linking message for a  $2^3$  diamond structure:



## thank you for your attention!