
Multicollision attacks on iterated hash
functions

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

Fourth Pythagorean Conference
Corfu, Greece

Friday, June 4, 2010

references and summary
This talk is based on joint work with Mridul Nandi and Jalaj
Upadhyay:

• M. Nandi and D.R. Stinson. Multicollision attacks on some
generalized sequential hash functions. IEEE Transactions on
Information Theory 53 (2007), 759–767.

• D.R. Stinson and J. Upadhyay. On the complexity of the
herding attack and some related attacks on hash functions.
IACR ePrint 2010/30.

I will talk about two recent results on multicollision attacks for
hash functions:

1. a generalization of Joux’s multicollision attack to a wide
variety of hash functions, and

2. a second look at constructing diamond structures, which were
invented by Kelsey and Kohno to use in their herding attacks
on iterated hash functions.

hash functions

• Typically, a hash function takes a “long” input string and
produces a random-looking “short” output string called a
message digest.

• Hash functions have been used for many years in computer
science to create hash tables for efficient methods for
information retrieval.

• In this context, it is important that collisions occur as
infrequently as possible, where a collision for a hash function
hash is a pair of distinct inputs x, x′ such that
hash(x′) = hash(x).

• Hash functions are also used frequently in cryptography, where
additional properties are required. Such hash functions are
termed cryptographic hash functions.

• A cryptographic hash function maps an arbitrary-length input
string to a fixed-length output string:
hash : {0, 1}∗ → {0, 1}n.

three security properties of hash functions

Collision resistance
It should be difficult to find x, x′ ∈ {0, 1}∗ such that
x′ 6= x and hash(x′) = hash(x).
(Here, x and x′ collide.)

Preimage resistance
Given z ∈ {0, 1}n, it should be difficult to find
x ∈ {0, 1}∗ such that hash(x) = z.
(Here, x is a preimage of z.)

Second preimage resistance
Given x ∈ {0, 1}∗, it should be difficult to find
x′ ∈ {0, 1}∗ such that x′ 6= x and
hash(x′) = hash(x).
(Here, x′ is a second preimage of h(x).)

difficulty of the three problems

• Suppose we postulate the existence of an “ideal” hash
function that outputs a random value hash(x) for every input
x.

• Such a hash function is called a random oracle.

• It is easy to analyse the difficulty of the three problems in the
random oracle model.

• Preimages and Second preimages can be found by exhaustive
search in expected time Θ(2n).

• Collisions can be found using the birthday paradox in expected
time Θ(2n/2).

• When we construct a “real” hash function, our goal is that
the three problems cannot be solved more quickly than in the
ideal case (but proving things like this are extremely difficult!).

multicollisions

• There has been recent interest in studying the difficulty of
finding multicollisions in hash functions.

• A γ-multicollision is a γ-subset {x1, . . . , xγ} ⊆ {0, 1}∗ such
that hash(x1) = hash(x2) = · · · = hash(xγ).

• It is commonly asserted that the complexity of finding a
γ-multicollision in the random oracle model is Θ(2n(γ−1)/γ).

• Using estimates due to Diaconis and Mosteller (1989), Nandi
and Stinson observed that the true complexity is
Θ(γ 2n(γ−1)/γ).

• For additional, more detailed analysis along these lines, see
Suzuki, Tonien, Kurosawa, and Toyota (2008).

iterated hash functions

• The most common design strategy for hash functions is the
iterated hash function.

• MD4, MD5, and SHA-1 are all iterated hash functions.

• We need a padding function, which takes an input string x,
where |x| ≥ n+ t+ 1, and constructs a “padded” string y,
such that |y| ≡ 0 mod t.

• We also need a compression function,
compress : {0, 1}n+t → {0, 1}n.

• IV is a public initial value which is a bitstring of length n.

constructing an iterated hash function
preprocessing step

Given x, construct the padded string y, where
|y| ≡ 0 mod t. Denote

y = y1 ‖ y2 ‖ · · · ‖ yr,

where |yi| = t for 1 ≤ i ≤ r. The yi’s are called
message blocks.

processing step
Compute the following chaining values:

z0 ← IV
z1 ← compress(z0 ‖ y1)

...
...

...

zr ← compress(zr−1 ‖ yr).

output
Define h(x) = zr.

constructing an iterated hash function

Joux’s multicollision attack

• Joux (2004) discovered a simple multicollision attack on
iterated hash functions.

• The expected complexity to find a 2r-multicollision is
Θ(r 2n/2), which is much smaller than the birthday attack
having complexity Θ(2r × 2n(2r−1)/2r

).

• The idea is to find r successive collisions in the compression
function, each of which requires time Θ(2n/2) to find.

• For z, z′ ∈ {0, 1}n and y ∈ {0, 1}t, we use the notation

z
y−→ z′ (a labelled arc) to mean compress(z, y) = z′, where

|z| = |z′| = n and |y| = t.

• We can extend this notation in a natural way to incorporate
multiple message blocks, e.g., z

y1,y2,y3−−−−−→ z′.

Joux’s multicollision attack (cont.)

z0
y11−→ z1 and z0

y21−→ z1 for some z1, where y1
1 6= y2

1

z1
y12−→ z2 and z1

y22−→ z2 for some z2, where y1
2 6= y2

2
...

zr−1
y1r−→ zr and zr−1

y2r−→ zr for some zr, where y1
r 6= y2

r .

Then the set

{y1
1, y

2
1} × {y1

2, y
2
2} × · · · × {y1

r , y
2
r}

is a 2r-multicollision:

Question: Can Joux’s attack be generalised to other types of hash
functions?

generalised iterated hash functions

• hash twice uses every message block twice:
hashtwice(y) = hash(hash(IV, y), y) where y is the padded
message.

• That is, we process the message blocks in the order
y1, . . . , yr, y1, . . . , yr.

• zipper hash processes the message blocks in the order
y1, . . . , yr, yr, . . . , y1.

• Let S = {1, 2, . . . , r} denote the set of indices of the r
message blocks.

• A generalised sequential hash function (GSHF) is based on a
sequence α = 〈α1, · · · , αs〉 where αi ∈ S for all i.

• The GSHF based on α is defined as follows:

z0 = IV
zi = compress(zi−1, yαi), 1 ≤ i ≤ s.

a partial order relation

• We define a relation on the symbol set S.

• For x, x′ ∈ S, x 6= x′, define x ≺ x′ if every occurrence of x in
α precedes every occurrence of x′ in α.

• The relation “≺” is antisymmetric and transitive; hence “≺”
is a partial order.

• Two symbols x 6= x′ are incomparable if it is not the case that
x ≺ x′ or x′ ≺ x.

• A list of symbols x1, . . . , xd is a chain if x1 ≺ x2 ≺ · · · ≺ xd.

• A set of chains is a chain decomposition if the chains are
disjoint and their union is S.

an attack based on a chain

• We present an attack on the hash function based on the
sequence

α = 〈1, 2, 1, 3, 2, 4, 3, 5, 4, 5〉

• Note that 1 ≺ 3 ≺ 5 is a chain.

• We decompose α into three subsequences:

〈1, 2, 1〉, 〈3, 2, 4, 3〉, 〈5, 4, 5〉

• Define y2 = y4 = y∗ for some arbitrary t-bit string y∗.

• The attack consists of three successive birthday attacks:

z0
y11 ,y

∗,y11−−−−−→ z1 and z0
y21 ,y

∗,y21−−−−−→ z1

z1
y13 ,y

∗,y∗,y13−−−−−−−→ z2 and z1
y23 ,y

∗,y∗,y23−−−−−−−→ z2

z2
y15 ,y

∗,y15−−−−−→ z3 and z2
y25 ,y

∗,y25−−−−−→ z3

• We get a 23-multicollision with collision value z3.

an attack based on an initial interval

• For hash twice, we have α = 〈1, 2, . . . , r, 1, 2, . . . , r〉, which
does not have a chain of length longer than 1.

• We have another approach, based on the fact that the first r
message blocks to be processed are all different.

(1) Use Joux’s multicollision attack to find a
2r-multicollision C for the first r message blocks.

(2) Let r = uv for “appropriate” u and v. Divide the
index interval [r + 1, 2r] into u equal intervals, each
of size v. For i = 1, . . . , u, (if possible) use a
standard birthday attack to find two v-tuples from
the appropriate part of C which collide.

(3) Provided that the u birthday attacks in step (2) all
succeed, we get a multicollision set (of size 2u) for
hash twice.

combining the two attacks
We consider sequences in which every symbol occurs at most twice.

The next theorem follows from Dilworth’s Theorem, which states
that for any a partial order “≺” on a finite set S, the maximum
number of mutually incomparable elements in S is equal to the
minimum number of chains in any chain decomposition.

Theorem (Nandi and Stinson (2007))

Let α be a sequence of elements from symbol set S = {1, . . . , r}
such that 1 ≤ freq(x, α) ≤ 2 for all x ∈ S. Suppose that r ≥ r1r2.
Then one of the following holds:

1. maxchain(α) ≥ r1, or

2. there exists an initial interval [1, w] such that α[1, w] contains
at least r2 symbols each having frequency 1.

These attacks have subsequently been extended by Hoch and
Shamir (2006) to sequences where each symbol occurs at most c
times, for some fixed positive integer c.

proof sketch

• Let ρ1 = maxchain(α).

• If ρ1 ≥ r1, we’re done.

• Otherwise, when ρ1 < r1, let ρ2 denote the maximum number
of incomparable elements.

• By Dilworth’s Theorem, there is a chain decomposition having
ρ2 chains.

• Each chain has length at most ρ1, so

ρ2 ≥ n/ρ1 > n/r1 ≥ r2.

• Take an initial subsequence of α that contains the first
occurrences of the ρ2 incomparable elements.

• This works precisely because these elements are incomparable.

the herding attack
Kelsey and Kohno (2006) described the following hash function
property, presented as a game between an attacker and a
challenger:

Chosen-target-forced-prefix resistance
An attacker commits to a message digest, z, and is
then challenged with a prefix, P . It should be
infeasible for the attacker to be able to find a suffix
S such that hash(P ‖ S) = z.

• Intuitively, it does not seem that a chosen-target-forced-prefix
attack should be easier than finding a preimage, which
generally takes time Θ(2n).

• An attack that violates CTFP resistance is often called a
herding attack.

• Kelsey and Kohno described a herding attack on iterated hash
functions using a precomputed data structure called a
diamond structure.

diamond structures

• First we’ll talk about diamond structures; we’ll present the
herding attack a bit later.

• A 2k-diamond structure contains a complete binary tree of
depth k.

• There are 2k−` nodes at level `, for k ≥ ` ≥ 0.

• There is also a single node at level −1, which we will call the
source node.

• The source node is joined to every node at level 0.

• The nodes at level 0 are called the leaves of the diamond
structure and the node at level k is called the root of the tree.

diamond structures (cont.)

Here is a diagram of a 23 diamond structure:

-1 0 2 31

diamond structures (cont.)

• Every edge e in the diamond structure is labeled by a string
σ(e) which consists of one or more message blocks.

• We also assign a label h(N) to every node N in the structure
at level at least 0, as follows:

• Consider the unique directed path P from the source node to
the node N in the diamond structure.

• P will consist of some edges e0e1 · · · e`, where N is at level `
in the tree. Then we define

h(N) = hash(σ(e0) ‖ σ(e1) ‖ · · · ‖ σ(e`)).

• At any level ` of the structure there are 2k−` hash values.

• These must be paired up in such a way that, when the next
message blocks are appended, 2k−`−1 collisions occur.

• Thus there are 2k−`−1 hash values at the next level.

• The entire structure yields a 2k-multicollision.

building a diamond structure

• A diamond structure is constructed one level at a time.

• We describe how to construct the nodes at level 1.

• For each of the 2k nodes at level 0, construct a list of L
random message blocks and compute the relevant hashes.

• Look for collisions in different lists and try to find 2k−1

disjoint pairs of collisions.

• For example, suppose k = 2, L = 4 and n = 4, and we get
the following lists of hash values:

List 1: 0011 1011 0101 1100
List 2: 0010 1000 1010 0001
List 3: 0101 0001 1111 0000
List 4: 1110 1101 1011 1001

• Then we can pair up lists 1 and 4 (having collision 1011) and
lists 2 and 3 (having collision 0001).

Kelsey and Kohno’s analysis

Kelsey and Kohno argued as follows:

The work done to build the diamond structure is based
on how many messages must be tried from each of 2k

starting values, before each has collided with at least one
other value. Intuitively, we can make the following
argument, which matches experimental data for small
parameters: When we try 2n/2+k/2+1/2 messages spread
out from 2k starting hash values (lines), we get
2n/2+k/2+1/2−k messages per line, and thus between any
pair of these starting hash values, we expect about
(2n/2+k/2+1/2−k)2 × 2−n = 2n+k+1−2k−n = 2−k+1

collisions. We thus expect about 2−k+k+1 = 2 other hash
values to collide with any given starting hash value.

the flaw in the analysis

Unfortunately, this line of reasoning does not imply that the 2k

nodes can be paired up in such a way that we get 2k−1 collisions:

the flaw in the analysis

Unfortunately, this line of reasoning does not imply that the 2k

nodes can be paired up in such a way that we get 2k−1 collisions:

random graph formulation

• It is useful to think of this problem in a graph-theoretic
setting.

• Suppose we label the nodes as 1, 2, . . . , 2k.

• Then we construct a graph G = (V, E), where the vertex set is
V = {v1, . . . , v2k} and (vi, vj) ∈ E if the nodes vi and vj
collide at the next level of the diamond structure.

• Let G(ν, p) denote a random graph on ν labelled vertices,
obtained by selecting each pair of vertices to be an edge
randomly and independently with a fixed probability p.

• Based on the analysis given above, we see that the graph G is
precisely a random graph in G(2k, 2−k+1).

• Now, the question is if this random graph contains a perfect
matching, as this is precisely what is required in order to be
able to find the desired 2k−1 pairs of collisions.

threshold functions for random graphs

• As p increases from 0 to 1, a random graph in G(ν, p)
becomes more and more dense.

• Many natural monotone graph-theoretic properties become
true within a very small range of values of p.

• Given a monotone graph-theoretic property, there is typically a
value of p (which will be a function t(ν) depending on ν, the
number of vertices) called the called threshold function.

• The given property holds in the model G(ν, p) with probability
close to 0 for p < t(ν), and the property holds with probability
close to 1 for p > t(ν).

• A threshold function for having a perfect matching is any
function having the form

t(ν) =
ln ν + f(ν)

ν

for any f(ν) such that limν→∞ f(ν) =∞.

fixing the analysis

• G(2k, 2−k+1) has p = 2/ν, which is much lower than required
threshold, so the Kelsey-Kohno analysis is not valid.

• We assume a random graph in G(ν, ln ν/ν) has a perfect
matching.

• We construct ν = 2k lists, each containing L messages.

• The probability that any two given messages collide is 2−n.
The probability that there is at least one collision between two
given lists is p ≈ L2/2n.

• We want p ≈ ln ν/ν, so we take

L ≈
√
k ln 2× 2(n−k)/2 ≈ 0.83×

√
k × 2(n−k)/2.

• The message complexity (i.e., the number of hash
computations) at level 0 is therefore

2kL ≈ 0.83×
√
k × 2(n+k)/2.

fixing the analysis (cont.)

• Ignoring constant factors, this is a factor of about
√
k bigger

than the estimate in Kelsey-Kohno.

• The lower levels of the diamond structure are analysed in a
similar way, replacing k by k − 1, k − 2, etc.

• The total message complexity is also Θ(
√
k × 2(n+k)/2).

• Thus we obtain a rigourous analysis (in the random oracle
model) with a precise estimate of the message complexity.

• Overall, it turns out that Kelsey and Kohno’s estimate (for
the entire structure) was too small by a factor of

√
k.

• Note this has some effect on various other attacks in the
literature that make use of diamond structures.

Kelsey-Kohno’s herding attack

• First, we construct a diamond structure with k levels.

• We commit to the hash value z = h(root) and the challenger
provides a prefix P .

• We choose random strings T until we find a linking message,
i.e., a string T such that hash(P ‖ T) = h(N) for some node
N in the diamond structure.

• This takes, on average, 2n−k−1 attempts.

• Once we have found the linking message T , construct S by
concatenating T with the message blocks in the diamond
structure on the path from N to root.

• The total complexity of the attack is
Θ(2n−k +

√
k × 2(n+k)/2).

• The value of k can be chosen as desired. If k ≈ n/3, then the
message complexity of the attack is about Θ(

√
n× 22n/3),

which is a significant improvement over Θ(2n).

Kelsey-Kohno’s herding attack (cont.)

A linking message for a 23 diamond structure:

-1 0 2 31

P

T

thank you for your attention!

