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Secret Sharing Scheme

• A bank has 5 managers.

• No single manager is trusted to open the safe.

• Any pair of managers are allowed to open it together.
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(k, n)-Threshold Scheme (Blakley, Shamir 1979)

linear scheme: (over GF(p))
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secret: s
randomisation:
r = (r1 = s, r2, . . . , rk)
shares: Mi · r= f(i)

f(x) =
r1 + r2x + r3x

2 + · · · + rkx
k−1

k
∑

j=1

αijMij = (1, 0, . . . , 0) ⇒

k
∑

j=1

αij (Mij · r) = (1, 0, . . . , 0) · r = s

M has rank k (Vandermonde)



More General Schemes

Set of participants: S = {1, 2, . . . , n}

Definition (monotone access structure)

Collection Σ of subsets of S such that A′ ∈ Σ whenever A′ ⊇ A
and A ∈ Σ.

• A ∈ Σ authorised set

• B ∈ Σc := P(S) \ Σ unauthorised set

Definition (linear secret sharing scheme realising Σ)

n′ × d matrix M over GF (p) where
(1, 0, 0, . . . , 0) ∈ span(rows I1, I2, . . . , Ij) iff {i1, i2, . . . , ij} ∈ Σ.



Example

n = 8, n′ = 12
Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {8, 1}}
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Ramp Schemes

Definition (perfect secret sharing scheme)

unauthorised sets are unable to determine any information about s

Example ((t, k, n)-ramp scheme)

Take a (k, n)-threshold scheme and define the secret to be
r1, r2, r3, . . . , rk−t (i.e. the first k − t coefficients of f).
Then:

• Any k users can recover the secret.

• Any set of at most t users learns no information about the
secret.

• If k > t + 1, then the ramp scheme is not perfect.



Information Rate

Definition (information rate of a secret sharing scheme)

(size of the secret)/(size of the largest share)

• Every perfect scheme has information rate at most 1.

• An ideal secret sharing scheme has information rate 1.

• Shamir’s secret sharing scheme is ideal.

• The previously described (t, k, n)-ramp scheme has (optimal)
information rate k − t.



(k, n)-Threshold Schemes and Reed-Solomon Codes

r → f(x) = s + r2x + r3x
2 + · · · + rkx

k−1

→ shares (f(1), f(2), . . . , f(n))

The code

C = {(f(1), f(2), . . . , f(n)) : f ∈ GF(p)[x], deg f < k}

is an [n, k, n − k + 1] Reed-Solomon code.

Conclusion: Given the shares of all participants, the secret can be
recovered even if (n − k)/2 of the shares are corrupted.



Error Correction for General Schemes?

Kaoru Kurosawa: eprint.iacr.org/ 2009/ 263
General Error Decodable Secret Sharing Scheme and Its Application

e.g. n = 8, access structure
Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}{5, 6}, {6, 7}, {7, 8}, {8, 1}}

(s1, s2, s3, s4, s5, s6, s7, s8) share vector
↓

(s1, s2,A, s4,A, s6,A, s8) corrupt positions of B ∈ Σc

↓
(t1, t2, t3, t4, t5, t6, t7, t8) corrupted share vector

Given (t1, t2, t3, t4, t5, t6, t7, t8) can you recover the secret?

eprint.iacr.org/2009/263


General Adversary Structures

• Σ =access structure

• Γ =monotone adversary structure

Definition (monotone adversary structure)

Collection Γ of subsets of S such that A′ ∈ Γ whenever A′ ⊆ A
and A ∈ Γ.

Examples:

• Γ = Σc (e.g., as considered by Kurosawa)

• Γ is the collection of subsets of size at most t



Γ-Error Decodable Secret Sharing

Γ-error decodable secret sharing scheme realising an access
structure Σ: if shares belonging to members of a set W ∈ Γ are
corrupted then the following decoding algorithm succeeds in
recovering the correct secret.

Definition (decoding algorithm)

Input: A possibly corrupted share list t = (t1, t2, . . . , tn).

1. ∀ possible randomisation vectors r compute the share list
v = (v1, v2, . . . , vn) ∈ GF(p)n.
If {j : vj 6= tj} ∈ Γ then r1 is a candidate secret.

2. If ∃ unique candidate secret s, return s.

3. If there are no candidate secrets, or if there is more than one
candidate secret, return ⊥.



A Necessary and Sufficient Condition for
Γ-Error Decodability

Definition (condition Q(Γ, Γ, Σc))

∀ W1,W2 ∈ Γ, B ∈ Σc we have W1 ∪ W2 ∪ B 6= S.

Theorem (Fehr-Maurer ’02)

A secret sharing scheme is Γ-Error Decodable if and only if
condition Q(Γ,Γ,Σc) is satisfied.

Proof:
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Efficiency of Error Decoding

• Generating the shares for any linear secret-sharing scheme is
efficient.

• There are efficient algorithms for decoding Reed-Solomon
codes.

• For adversary structures other than the threshold case it is not
generally known whether there exists an error decodable secret
sharing scheme with efficient decoding.



Kurosawa’s Polynomial Time Error Decodable Scheme
(Generalisation)

Takes any linear Σc-error decodable secret sharing scheme and
constructs a Σc-error decodable secret sharing scheme with
polynomial time decoding∗, but having larger shares.



Kurosawa’s Polynomial Time Error Decodable Scheme
(Generalisation)

Takes any linear Σc-error decodable secret sharing scheme and
constructs a Σc-error decodable secret sharing scheme with
polynomial time decoding∗, but having larger shares.

* polynomial in the total size of the shares. If the total size of the
shares is polynomial in the number of participants, (e.g. for an
ideal scheme) then Kurosawa’s scheme can be decoded in time
polynomial in the number of participants.



Kurosawa’s Polynomial Time Scheme

s

↓

v1 v2 v3 v4 . . . vn level 1 M is used to generate share vector
v corresponding to secret s



Kurosawa’s Polynomial Time Scheme
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Kurosawa’s Polynomial Time Scheme -Efficient Decoding

1. ∀ i, generate share vector corresponding to secret vector w
i,

compare with other participants’ level 2 shares.

2. If the set of positions where they differ is not in Γ, conclude
that w

i is corrupted.
Note: This can be done efficiently if Γ = Σc because the
scheme is linear.

3. Use uncorrupted level 1 shares to recover s.
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Reducing the Storage Requirements of Kurosawa’s Scheme

How to reduce the size of the level 2 shares:

• The level 2 schemes need not be perfect; they are only used
to authenticate the level 1 shares.

• It suffices for the level 2 shares to be assigned using any
(possibly non-perfect) secret-sharing scheme with the
following properties:

1. Sets of participants in Σc learn no information about the
secret.

2. For any two adversary sets W1, W2 ∈ Γ, the participants in
S \ (W1 ∪ W2) should be able to recover the secret (this
property is required to ensure that a level 2 share list, corrupted
by an adversary set in Γ, determines a unique level 1 secret).

• Often, we can replace M by an appropriate ramp scheme.



Reducing the Storage Requirements of Kurosawa’s Scheme
(cont.)

How to reduce the number of level 2 schemes required:

• A ⊆ S := participants whose level 1 shares are shared using
level 2 schemes.

• Decoding succeeds if we can find an authorised set whose
shares are confirmed to be uncorrupted:

∀W ⊆ A with W ∈ Γ we have A \ W ∈ Σ.

Corollary: The number of level 2 schemes required is upper
bounded by

1 + max
W∈Γ

|W | + max
B∈Σc

|B|.



Example

n = 8, Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {8, 1}}
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Γ: single participants

• It suffices to provide level 2 sharings for {1, 2, 3, 4} (given one
adversary in {1, 2, 3, 4}, there is still an uncorrupted
authorised set in {1, 2, 3, 4}).
(This cuts the number of level 2 schemes needed by half.)

• We can use a (4, 6, 8)-ramp scheme (|S\(W1 ∪ W2)| = 6, and
the maximum size of an unauthorised subset is 4).
(This requires at most half the storage of any perfect scheme.)



One-Round (n, t)-Perfectly Secure Message Transmission
(Dolev, Dwark, Waarts, Yung 1993)

Alice transmits a message s to Bob by sending information over
n channels so that:

• Bob recovers s even if Eve corrupts ≤ t of the channels;

• Eve learns no information about s from the information Alice
sent on the channels she corrupts.

• A (n, t)-PSMT scheme exists iff n ≥ 3t + 1. (Dolev et al.)

• Desmedt, Wang and Burmester (2005):
If Eve corrupts channels corresponding to a set in Γ then
one-round PSMT is possible iff condition Q(Γ,Γ,Γ) holds.

• When Γ is a threshold structure, the Dolev et al result is
recovered.



One-Round (Γ, Σc)-PSMT

We consider a more general setting:

• Bob correctly recovers s if the information sent on a set
W ∈ Γ of channels is changed.

• Eve learns nothing about s if she eavesdrops on a set D ∈ Σc

of channels.

Theorem
A one-round (Γ,Σc)-PSMT scheme exists iff condition Q(Γ,Γ,Σc)
holds.

Proof: (⇐): Use a Γ-error decodable secret sharing scheme
realising Σ, send a share down each channel!
(⇒): Use the proof technique from the error-decodability theorem.
Corollary: A one-round (Γ,Σc)-PSMT scheme exists iff there exists
a Γ-error decodable secret sharing scheme realising Σ.



So are they really just the same thing?
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Theorem
A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not
necessarily perfect) secret-sharing scheme where

• the authorised sets are those of the form S \ (W1 ∪ W2) with
W1,W2 ∈ Γ,

• the unauthorised sets belong to Σc.
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Not quite...

Theorem
A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not
necessarily perfect) secret-sharing scheme where

• the authorised sets are those of the form S \ (W1 ∪ W2) with
W1,W2 ∈ Γ,

• the unauthorised sets belong to Σc.

Corollary: A one-round (n, t)-PSMT scheme is equivalent to a
(t, n − 2t, n)-ramp scheme.



Efficiency of One-Round PSMT: Number of Channels

S -set of channels, Γ -active adversary, Σc -passive adversary

The minimum number of channels needed for one-round
(Γ,Σc)-PSMT is |T |, where T ⊆ S is the smallest subset for
which Q(ΓT ,ΓT ,Σc

T ) holds.
Note: ΓT denotes the restriction of Γ to T , and Σc

T denotes the
restriction of Σc to T .

Corollary:
|T | ≤ 1 + 2max

W∈Γ

|W | + max
B∈Σc

|B|.

(In the threshold case this reproves the result that one-round
(n, t)-PSMT is possible iff n ≥ 3t + 1.)



Efficiency of One-Round PSMT: Transmitted Info

Definition (overhead)

(total information sent over all channels)/(size of message s)

• Desmedt et al. describe a construction for a one-round
(Γ,Γ)-PSMT for any Γ satisfying Q(Γ,Γ,Γ) that’s equivalent
to a known secret sharing scheme construction.

• Kurosawa points out that in the threshold case this has a
worse overhead than if an ideal threshold scheme is used.

• You can do better still if you use a ramp scheme!

Corollary (Fitzi et al): The optimal overhead of a one-round
(n, t)-PSMT scheme is n/(n − 3t).
Proof: Use the equivalence with ramp schemes and the fact that
the optimal information rate of a (t, k, n)-ramp scheme is k − t
(Jackson & Martin).



Open Problems

• Do there exist constructions of one-round (Γ,Σc)-PSMT
schemes with polynomial time message recovery for general Γ,
Σ with lower communication overheads?

• Is it possible to determine in general which classes of Γ and Σ
can be realised by schemes with efficient decoding/message
recovery?

• Is it possible to find efficient decoding/message recovery
techniques for specific classes of Γ and Σ?


