A coding theory approach to
unconditionally secure proof-of-retrievability
schemes for cloud storage

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

5TH INTERNATIONAL SYMPOSIUM ON
FOUNDATIONS & PRACTICE OF SECURITY

October 25-26, 2012
Ecole de Technologie Supérieure, Montréal

This is joint work with Maura Paterson and Jalaj Upadhyay.

The problem setting

Alice asks a server to store a (possibly large) file (or message)
m (e.g., using cloud storage).

The message m is divided into message blocks that we view
as elements of a finite field.

Typically, the message m will be encoded as M, using a
public error-correcting code such as a Reed-Solomon code.
The code provides redundancy, enabling erasures or corrupted
message blocks in M to be corrected.

Main problem: How can Alice be convinced that the server is
storing the encoded message M correctly?

Typical solution: A challenge-response protocol is periodically
invoked by Alice.

Bounded-use schemes

We do not assume that Alice is storing m or M.

Alice must precompute and store a fixed number of
challenge-response pairs, before transmitting M to the server.

Alice gains confidence in the server if it is able to respond to
all (or most of) her challenges.

A server who can respond correctly to a large proportion of
challenges should “know" (or be able to compute) the
contents of the unencoded message m (i.e., all the message
blocks).

This idea is formalised in the notion of an extractor, in which
case we have a proof-of-retrievability (or POR) scheme.

Extractors

The Extractor takes as input a description of the server's
proving algorithm, denoted P, and then outputs an
unencoded message 7.

Extraction succeeds if m = m.

The success probability of P, denoted succ(P), is the
probability that P gives a correct response for a randomly
chosen challenge.

Definition: the POR scheme is (0, ¢)-secure if the Extractor
succeeds with probability at least § whenever succ(P) > e.

Some previous related work

Blum et al. (1994) introduced memory checking.
Lillibridge et al. (2005) studied internet backup schemes.
Naor and Rothblum (2005) studied online memory checkers

and authenticators and they gave a lower bound on storage
requirements and communication complexity.

Juels and Kaliski (2007) introduced proof of retrievability
schemes.

Atieniese et al. (2007) introduced proof of data possession
schemes.

Shacham and Waters (2008) gave examples of unbounded-use
schemes along with formal security proofs.

Bowers, Juels, and Oprea (2009) used inner and outer codes
to construct POR schemes.

Dodis, Vadhan and Wichs (2009) gave the first examples of
unconditionally secure POR schemes.

Three phases in a POR scheme

1. initialisation
Alice server

M
M =e(m) ——— server constructs P

Three phases in a POR scheme

1. initialisation

Alice server
M
M =e(m) ——— server constructs P
2. audit
Alice server
.
_4a
T, = P(CZ)
T
%

Here: =1,2,....

Three phases in a POR scheme

1. initialisation

Alice server
M
M =e(m) ——— server constructs P
2. audit
Alice server
.
_4a
T, = P(CZ)
T
%
3. extraction
Alice server Extractor
P
—

3

Our problem setting

We study POR schemes in the setting of unconditional
security, where the adversary is assumed to have unlimited
computational capabilities.

We only consider POR schemes where § = 1, that is, where
extraction is guaranteed to be successful.

The constructions that we utilise for extractors only require
black-box access to the proving algorithm.

In this setting, it turns out that extraction can be interpreted
naturally as nearest-neighbour decoding in a certain code
(which we term a response code).

Error-correcting codes have been used in many constructions
of POR schemes; we propose that error-correcting codes
constitute the natural foundation to construct as well as
analyse arbitrary POR schemes.

Why unconditional security?

Simplicity and mathematical elegance: The schemes are
mathematically elegant as well as easier to understand and
analyse because we are not making use of any additional
cryptographic primitives.

Exact analyses: We can give very simple exact (i.e.,
non-asymptotic) analyses of various schemes.

Links with error-correcting codes: The essential role of
error-correcting codes in the design and analysis of POR
schemes becomes clear: codes are not just a method of
constructing POR schemes; rather, every POR scheme gives
rise to a code in a natural way.

Adversarial strength: It is interesting and informative to
consider security against the strongest possible adversary and
to prove security results that do not depend on unproven
assumptions.

Basic Scheme

Initialisation

Given a message m € (F,)*, encode M as e(m) = M € (F,)",
where ¢ is a prime power and n > k. The set of en-
coded messages is the encoded message space. We write
M = (my,...,my).

Alice gives M to the server. Alice also generates a random
challenge ¢ € {1,...,n} and she stores ¢ and m..

Challenge-response
Alice gives the challenge c to the server. The server responds
with 7 = m,. Alice checks that r = m..

The extractor

1. Compute responses to all possible challenges: On input
P, compute the response vector M’ = (m},...,m}),
where m/, = P(c) for all c € {1,...,n} (i.e., m. is the
response from P when it is given the challenge c).

2. Nearest-neighbour decoding: Find an encoded message
M so that dist(M’, M) is minimised, where dist(-, -)
denotes the hamming distance between two vectors.

3. Output m = eil(]\/f\).

Theorem
Suppose that P is a proving algorithm for the Basic Scheme for
which

d
1— —
succ(P) > o

where the hamming distance of the encoded message space is d.
Then the Extractor will always output m = m.

Example

Suppose that Alice wants to use the Basic Scheme with
q = 2'% and n = 1000 such that the minimum distance of the
encoded message space is 400.

This will guarantee that extraction will be possible whenever
succ(P) > 0.8.

If Alice uses a Reed-Solomon code to encode messages, then
d=mn—k+ 1, where k is the dimension of the code.

Therefore, kK = 601, so the message expansion is

1000
—— =~ 1.67.
601
The size of a challenge is logy n = 10 bits and the size of a

response is log, ¢ = 10 bits.

Generalisation

We can consider arbitrary challenge-response protocols, where a
challenge will be chosen from a specified challenge space I, and
the response will be an element of a response space A. The
response code consists of all |I'|-tuples of elements from A that are
obtained as correct responses for some encoded message M. We
can prove a straightforward generalisation of the previous theorem.

Theorem

Suppose that P is a proving algorithm for a General POR Scheme
for which

d*
m,
where the hamming distance of the response code is d*. Then the
Extractor based on nearest neighbour decoding will always output

~

m =m.

succ(P) >1—

Multiblock Challenge Scheme

Here, a challenge specifies ¢ indices “all at once”, say
1 < e <y

Tl = (%)-

The response is the (-tuple (m;,,...,m;,).

If the hamming distance of the encoded message space is d,
then the hamming distance of the response code is

r=()- (")

Therefore, extraction succeeds if

—
~—
3
|
U
~—"

succ(P) > =)

[\

[\
—~
~3
~

Linear Combination Scheme

A challenge V is a vector in (F;)" having hamming weight
equal to 4.
The response is

n
V-M= Zvimi mod q.
i=1
IT[= (})(g—1)" and |A[=¢.
If the hamming distance of the encoded message space is d,
then a very accurate estimate for the hamming distance of the
response code is

-0 (0)-(7)

Therefore, extraction succeeds if

n—d
succ(P) > % +% (; + (q—l)(”) _

Comparison

The Linear Combination Scheme has much smaller responses
than the Multiblock Challenge Scheme (I, as opposed to
(Fq)")-

However, the Linear Combination Scheme has a larger
challenge space than the Multiblock Challenge Scheme

((3)(q — 1) as opposed to (7)).

The relative distance of the response codes of the two
schemes are very similar, so the security guarantees of the two
schemes are also very similar.

Example

Suppose that Alice wants to use the Linear Combination
Scheme with ¢ > 2 and n = 1000.

Her goal is that extraction will be possible whenever
succ(P) > 0.8.

Here, d = 50 and ¢ = 10 will work.

If Alice uses a Reed-Solomon code to encrypt messages, then
k = 951, so the message expansion is

1000
—— ~ 1.05.
951
The size of a challenge is 178 bits and the size of a response

is log, ¢ = 10 bits.

Estimating the success probability of a prover

e We have proven that extraction is possible provided that
succ(P) is sufficiently close to 1.

e In general, the only way to determine the exact value of
succ(P) is to query P with all the possible challenges (as is
done during extraction).

e In practice, we would like to be able to estimate succ(P)
based on a relatively small number of challenges.

e This can be done using classical statistical techniques such as
hypothesis testing and confidence intervals.

Hypothesis testing for the Basic Scheme

We know that extraction will be successful in the Basic
Scheme if
n—lg)+1

() n

We wish to distinguish the null hypothesis
w—1

Hy : succ(P) < —

from the alternative hypothesis

H; :succ(P) >

SRR

If we reject the null hypothesis Hy, then we believe that
extraction is possible.

Hypothesis testing for the Basic Scheme (cont.)

e Suppose there are g correct responses in t trials.

e For simplicity, assume the challenges are chosen uniformly at
random with replacement.

e The condition for rejecting the null hypothesis at a 5%
significance level is

3 (t) (WT‘Ll)i (”‘Z“)” < 0.05.

i=g

e If this condition holds, then we are quite confident that
successful extraction is possible.

Example

Suppose that Alice using the Basic Scheme with n = 1000
and the minimum distance of the encoded message space is
400.

Then extraction is possible whenever succ(P) > 0.8.

Suppose the server responds to 100 challenges that have been
chosen uniformly with replacement, and that 87 of the
responses were correct.

We find that

100

100 , ,

§ (.) 0.8°0.21907% ~ 0.047 < 0.05.
7

=87

There is sufficient evidence to reject the null hypothesis at the
5% significance level, and so we conclude that the file can be
reconstructed by an extractor.

A new lower bound on storage and communication

e Suppose that M is a random variable corresponding to a
randomly chosen unencoded message m.

e Let V be a random variable denoting any information stored
by Alice

e Let R be a random variable corresponding to the information
provided by a black-box Extractor.

e Suppose that the message can be reconstructed by the
Extractor with probability 1

e Then
HM|V,R) =0,

from which it follows that

H(M)< H(V)+ H(R).

Lower bound (cont.)

e Naor and Rothblum proved a lower bound for a weaker form
of POR-type protocol, termed an an authenticator.

e The Naor-Rothblum bound also applies to POR schemes.
e Phrased in terms of entropy, their bound states that

HM) < H(V)x HR),

which is a weaker bound than the one we proved above.

Thank you for your attention!

Our results can be found in the preprint

A coding theory foundation for the analysis of general
unconditionally secure proof-of-retrievability schemes for cloud
storage

which will shortly appear on the IACR eprint archive. This preprint
also contains a treatment of unconditionally secure keyed (i.e.,
unbounded-use) POR schemes.

