A coding theory approach to unconditionally secure proof-of-retrievability schemes for cloud storage

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

5TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS & PRACTICE OF SECURITY

October 25–26, 2012 École de Technologie Supérieure, Montréal

This is joint work with Maura Paterson and Jalaj Upadhyay.

The problem setting

- Alice asks a server to store a (possibly large) file (or message)
 m (e.g., using cloud storage).
- The message m is divided into message blocks that we view as elements of a finite field.
- ullet Typically, the message m will be encoded as M, using a public error-correcting code such as a Reed-Solomon code.
- \bullet The code provides redundancy, enabling erasures or corrupted message blocks in M to be corrected.
- Main problem: How can *Alice* be convinced that the *server* is storing the encoded message *M* correctly?
- Typical solution: A challenge-response protocol is periodically invoked by *Alice*.

Bounded-use schemes

- We do not assume that Alice is storing m or M.
- Alice must precompute and store a fixed number of challenge-response pairs, before transmitting M to the server.
- Alice gains confidence in the server if it is able to respond to all (or most of) her challenges.
- A server who can respond correctly to a large proportion of challenges should "know" (or be able to compute) the contents of the unencoded message m (i.e., all the message blocks).
- This idea is formalised in the notion of an extractor, in which case we have a proof-of-retrievability (or POR) scheme.

Extractors

- The Extractor takes as input a description of the server's proving algorithm, denoted \mathcal{P} , and then outputs an unencoded message \widehat{m} .
- Extraction succeeds if $\widehat{m} = m$.
- The success probability of \mathcal{P} , denoted succ(\mathcal{P}), is the probability that \mathcal{P} gives a correct response for a randomly chosen challenge.
- Definition: the POR scheme is (δ, ϵ) -secure if the *Extractor* succeeds with probability at least δ whenever $\operatorname{succ}(\mathcal{P}) \geq \epsilon$.

Some previous related work

- Blum et al. (1994) introduced memory checking.
- Lillibridge et al. (2005) studied internet backup schemes.
- Naor and Rothblum (2005) studied online memory checkers and authenticators and they gave a lower bound on storage requirements and communication complexity.
- Juels and Kaliski (2007) introduced proof of retrievability schemes.
- Atieniese et al. (2007) introduced proof of data possession schemes.
- Shacham and Waters (2008) gave examples of unbounded-use schemes along with formal security proofs.
- Bowers, Juels, and Oprea (2009) used inner and outer codes to construct POR schemes.
- Dodis, Vadhan and Wichs (2009) gave the first examples of unconditionally secure POR schemes.

Three phases in a POR scheme

1. initialisation

Three phases in a POR scheme

1. initialisation

2. audit

Alice server
$$\xrightarrow{c_i} r_i = \mathcal{P}(c_i)$$

$$\leftarrow r_i$$

Here i = 1, 2, ...

Three phases in a POR scheme

1. initialisation

2. audit

3. extraction

Our problem setting

- We study POR schemes in the setting of unconditional security, where the adversary is assumed to have unlimited computational capabilities.
- We only consider POR schemes where $\delta=1$, that is, where extraction is guaranteed to be successful.
- The constructions that we utilise for extractors only require black-box access to the proving algorithm.
- In this setting, it turns out that extraction can be interpreted naturally as nearest-neighbour decoding in a certain code (which we term a response code).
- Error-correcting codes have been used in many constructions of POR schemes; we propose that error-correcting codes constitute the natural foundation to construct as well as analyse arbitrary POR schemes.

Why unconditional security?

- Simplicity and mathematical elegance: The schemes are mathematically elegant as well as easier to understand and analyse because we are not making use of any additional cryptographic primitives.
- Exact analyses: We can give very simple exact (i.e., non-asymptotic) analyses of various schemes.
- Links with error-correcting codes: The essential role of error-correcting codes in the design and analysis of POR schemes becomes clear: codes are not just a method of constructing POR schemes; rather, every POR scheme gives rise to a code in a natural way.
- Adversarial strength: It is interesting and informative to consider security against the strongest possible adversary and to prove security results that do not depend on unproven assumptions.

Basic Scheme

Initialisation

Given a message $m \in (\mathbb{F}_q)^k$, encode M as $e(m) = M \in (\mathbb{F}_q)^n$, where q is a prime power and $n \geq k$. The set of encoded messages is the encoded message space. We write $M = (m_1, \dots, m_n)$.

Alice gives M to the server. Alice also generates a random challenge $c \in \{1, \dots, n\}$ and she stores c and m_c .

Challenge-response

Alice gives the challenge c to the server. The server responds with $r=m_c$. Alice checks that $r=m_c$.

The extractor

- 1. Compute responses to all possible challenges: On input \mathcal{P} , compute the response vector $M'=(m'_1,\ldots,m'_n)$, where $m'_c=\mathcal{P}(c)$ for all $c\in\{1,\ldots,n\}$ (i.e., m'_c is the response from \mathcal{P} when it is given the challenge c).
- 2. Nearest-neighbour decoding: Find an encoded message \widehat{M} so that $\operatorname{dist}(M',\widehat{M})$ is minimised, where $\operatorname{dist}(\cdot,\cdot)$ denotes the hamming distance between two vectors.
- 3. Output $\widehat{m} = e^{-1}(\widehat{M})$.

Theorem

Suppose that \mathcal{P} is a proving algorithm for the Basic Scheme for which

$$\operatorname{succ}(\mathcal{P}) > 1 - \frac{d}{2n},$$

where the hamming distance of the encoded message space is d. Then the Extractor will always output $\widehat{m}=m$.

Example

- Suppose that *Alice* wants to use the Basic Scheme with $q=2^{10}$ and n=1000 such that the minimum distance of the encoded message space is 400.
- This will guarantee that extraction will be possible whenever succ(P) > 0.8.
- If Alice uses a Reed-Solomon code to encode messages, then d = n k + 1, where k is the dimension of the code.
- Therefore, k = 601, so the message expansion is

$$\frac{1000}{601} \approx 1.67.$$

• The size of a challenge is $\log_2 n = 10$ bits and the size of a response is $\log_2 q = 10$ bits.

Generalisation

We can consider arbitrary challenge-response protocols, where a challenge will be chosen from a specified challenge space $\Gamma,$ and the response will be an element of a response space $\Delta.$ The response code consists of all $|\Gamma|$ -tuples of elements from Δ that are obtained as correct responses for some encoded message M. We can prove a straightforward generalisation of the previous theorem.

Theorem

Suppose that \mathcal{P} is a proving algorithm for a General POR Scheme for which

$$\operatorname{succ}(\mathcal{P}) > 1 - \frac{d^*}{2|\Gamma|},$$

where the hamming distance of the response code is d^* . Then the Extractor based on nearest neighbour decoding will always output $\widehat{m}=m$.

Multiblock Challenge Scheme

- Here, a challenge specifies ℓ indices "all at once", say $i_1 < \cdots < i_\ell$.
- $|\Gamma| = \binom{n}{\ell}$.
- The response is the ℓ -tuple $(m_{i_1}, \ldots, m_{i_\ell})$.
- If the hamming distance of the encoded message space is d, then the hamming distance of the response code is

$$d^* = \binom{n}{\ell} - \binom{n-d}{\ell}.$$

Therefore, extraction succeeds if

$$\operatorname{succ}(\mathcal{P}) > \frac{1}{2} + \frac{\binom{n-d}{\ell}}{2\binom{n}{\ell}}.$$

Linear Combination Scheme

- A challenge V is a vector in $(\mathbb{F}_q)^n$ having hamming weight equal to ℓ .
- The response is

$$V \cdot M = \sum_{i=1}^{n} v_i m_i \bmod q.$$

- $|\Gamma| = \binom{n}{\ell} (q-1)^{\ell}$ and $|\Delta| = q$.
- If the hamming distance of the encoded message space is d, then a very accurate estimate for the hamming distance of the response code is

$$d^* \approx \frac{(q-1)^{\ell+1}}{q} \left(\binom{n}{\ell} - \binom{n-d}{\ell} \right).$$

• Therefore, extraction succeeds if

$$\mathrm{succ}(\mathcal{P}) > \frac{1}{2} + \frac{1}{2} \left(\frac{1}{q} + \frac{(q-1)\binom{n-d}{\ell}}{q\binom{n}{\ell}} \right).$$

Comparison

- The Linear Combination Scheme has much smaller responses than the Multiblock Challenge Scheme (\mathbb{F}_q as opposed to $(\mathbb{F}_q)^{\ell}$).
- However, the Linear Combination Scheme has a larger challenge space than the Multiblock Challenge Scheme $\binom{n}{\ell}(q-1)^{\ell}$ as opposed to $\binom{n}{\ell}$).
- The relative distance of the response codes of the two schemes are very similar, so the security guarantees of the two schemes are also very similar.

Example

- Suppose that *Alice* wants to use the Linear Combination Scheme with $q \ge 2^{10}$ and n = 1000.
- Her goal is that extraction will be possible whenever succ(P) > 0.8.
- Here, d=50 and $\ell=10$ will work.
- If Alice uses a Reed-Solomon code to encrypt messages, then k=951, so the message expansion is

$$\frac{1000}{951} \approx 1.05.$$

• The size of a challenge is 178 bits and the size of a response is $\log_2 q = 10$ bits.

Estimating the success probability of a prover

- We have proven that extraction is possible provided that succ(P) is sufficiently close to 1.
- In general, the only way to determine the exact value of succ(P) is to query P with all the possible challenges (as is done during extraction).
- In practice, we would like to be able to estimate succ(P)
 based on a relatively small number of challenges.
- This can be done using classical statistical techniques such as hypothesis testing and confidence intervals.

Hypothesis testing for the Basic Scheme

 We know that extraction will be successful in the Basic Scheme if

$$\operatorname{succ}(\mathcal{P}) \ge \frac{n - \lfloor \frac{d}{2} \rfloor + 1}{n}.$$

- Denote $\omega = n \lfloor \frac{d}{2} \rfloor + 1$.
- We wish to distinguish the null hypothesis

$$H_0: \operatorname{succ}(\mathcal{P}) \leq \frac{\omega - 1}{n};$$

from the alternative hypothesis

$$H_1: \operatorname{succ}(\mathcal{P}) \geq \frac{\omega}{n}$$
.

• If we reject the null hypothesis H_0 , then we believe that extraction is possible.

Hypothesis testing for the Basic Scheme (cont.)

- Suppose there are g correct responses in t trials.
- For simplicity, assume the challenges are chosen uniformly at random with replacement.
- The condition for rejecting the null hypothesis at a 5% significance level is

$$\sum_{i=g}^{t} {t \choose i} \left(\frac{\omega-1}{n}\right)^i \left(\frac{n-\omega+1}{n}\right)^{t-i} < 0.05.$$

 If this condition holds, then we are quite confident that successful extraction is possible.

Example

- Suppose that *Alice* using the Basic Scheme with n=1000 and the minimum distance of the encoded message space is 400.
- Then extraction is possible whenever $succ(\mathcal{P}) > 0.8$.
- Suppose the server responds to 100 challenges that have been chosen uniformly with replacement, and that 87 of the responses were correct.
- We find that

$$\sum_{i=87}^{100} {100 \choose i} 0.8^i 0.2^{100-i} \approx 0.047 < 0.05.$$

 There is sufficient evidence to reject the null hypothesis at the 5% significance level, and so we conclude that the file can be reconstructed by an extractor.

A new lower bound on storage and communication

- Suppose that \mathbf{M} is a random variable corresponding to a randomly chosen unencoded message m.
- ullet Let f V be a random variable denoting any information stored by Alice
- Let ${f R}$ be a random variable corresponding to the information provided by a black-box *Extractor*.
- Suppose that the message can be reconstructed by the Extractor with probability 1
- Then

$$H(\mathbf{M}|\mathbf{V},\mathbf{R}) = 0,$$

from which it follows that

$$H(\mathbf{M}) \le H(\mathbf{V}) + H(\mathbf{R}).$$

Lower bound (cont.)

- Naor and Rothblum proved a lower bound for a weaker form of POR-type protocol, termed an an authenticator.
- The Naor-Rothblum bound also applies to POR schemes.
- Phrased in terms of entropy, their bound states that

$$H(\mathbf{M}) \le H(\mathbf{V}) \times H(\mathbf{R}),$$

which is a weaker bound than the one we proved above.

Thank you for your attention!

Our results can be found in the preprint

A coding theory foundation for the analysis of general unconditionally secure proof-of-retrievability schemes for cloud storage

which will shortly appear on the IACR eprint archive. This preprint also contains a treatment of unconditionally secure keyed (i.e., unbounded-use) POR schemes.