
A coding theory approach to
unconditionally secure proof-of-retrievability

schemes for cloud storage

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

5TH INTERNATIONAL SYMPOSIUM ON
FOUNDATIONS & PRACTICE OF SECURITY

October 25–26, 2012
École de Technologie Supérieure, Montréal

This is joint work with Maura Paterson and Jalaj Upadhyay.

The problem setting

• Alice asks a server to store a (possibly large) file (or message)
m (e.g., using cloud storage).

• The message m is divided into message blocks that we view
as elements of a finite field.

• Typically, the message m will be encoded as M , using a
public error-correcting code such as a Reed-Solomon code.

• The code provides redundancy, enabling erasures or corrupted
message blocks in M to be corrected.

• Main problem: How can Alice be convinced that the server is
storing the encoded message M correctly?

• Typical solution: A challenge-response protocol is periodically
invoked by Alice.

Bounded-use schemes

• We do not assume that Alice is storing m or M .

• Alice must precompute and store a fixed number of
challenge-response pairs, before transmitting M to the server .

• Alice gains confidence in the server if it is able to respond to
all (or most of) her challenges.

• A server who can respond correctly to a large proportion of
challenges should “know” (or be able to compute) the
contents of the unencoded message m (i.e., all the message
blocks).

• This idea is formalised in the notion of an extractor, in which
case we have a proof-of-retrievability (or POR) scheme.

Extractors

• The Extractor takes as input a description of the server ’s
proving algorithm, denoted P, and then outputs an
unencoded message m̂.

• Extraction succeeds if m̂ = m.

• The success probability of P, denoted succ(P), is the
probability that P gives a correct response for a randomly
chosen challenge.

• Definition: the POR scheme is (δ, ε)-secure if the Extractor
succeeds with probability at least δ whenever succ(P) ≥ ε.

Some previous related work

• Blum et al. (1994) introduced memory checking.

• Lillibridge et al. (2005) studied internet backup schemes.

• Naor and Rothblum (2005) studied online memory checkers
and authenticators and they gave a lower bound on storage
requirements and communication complexity.

• Juels and Kaliski (2007) introduced proof of retrievability
schemes.

• Atieniese et al. (2007) introduced proof of data possession
schemes.

• Shacham and Waters (2008) gave examples of unbounded-use
schemes along with formal security proofs.

• Bowers, Juels, and Oprea (2009) used inner and outer codes
to construct POR schemes.

• Dodis, Vadhan and Wichs (2009) gave the first examples of
unconditionally secure POR schemes.

Three phases in a POR scheme

1. initialisation
Alice server

M = e(m)
M−−−−−→ server constructs P

2. audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−
Here i = 1, 2,

3. extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

Three phases in a POR scheme

1. initialisation
Alice server

M = e(m)
M−−−−−→ server constructs P

2. audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−
Here i = 1, 2,

3. extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

Three phases in a POR scheme

1. initialisation
Alice server

M = e(m)
M−−−−−→ server constructs P

2. audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−

Here i = 1, 2,

3. extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

Our problem setting

• We study POR schemes in the setting of unconditional
security, where the adversary is assumed to have unlimited
computational capabilities.

• We only consider POR schemes where δ = 1, that is, where
extraction is guaranteed to be successful.

• The constructions that we utilise for extractors only require
black-box access to the proving algorithm.

• In this setting, it turns out that extraction can be interpreted
naturally as nearest-neighbour decoding in a certain code
(which we term a response code).

• Error-correcting codes have been used in many constructions
of POR schemes; we propose that error-correcting codes
constitute the natural foundation to construct as well as
analyse arbitrary POR schemes.

Why unconditional security?

• Simplicity and mathematical elegance: The schemes are
mathematically elegant as well as easier to understand and
analyse because we are not making use of any additional
cryptographic primitives.

• Exact analyses: We can give very simple exact (i.e.,
non-asymptotic) analyses of various schemes.

• Links with error-correcting codes: The essential role of
error-correcting codes in the design and analysis of POR
schemes becomes clear: codes are not just a method of
constructing POR schemes; rather, every POR scheme gives
rise to a code in a natural way.

• Adversarial strength: It is interesting and informative to
consider security against the strongest possible adversary and
to prove security results that do not depend on unproven
assumptions.

Basic Scheme

Initialisation
Given a message m ∈ (Fq)

k, encode M as e(m) = M ∈ (Fq)
n,

where q is a prime power and n ≥ k. The set of en-
coded messages is the encoded message space. We write
M = (m1, . . . ,mn).
Alice gives M to the server . Alice also generates a random
challenge c ∈ {1, . . . , n} and she stores c and mc.

Challenge-response
Alice gives the challenge c to the server . The server responds
with r = mc. Alice checks that r = mc.

The extractor

1. Compute responses to all possible challenges: On input
P, compute the response vector M ′ = (m′1, . . . ,m

′
n),

where m′c = P(c) for all c ∈ {1, . . . , n} (i.e., m′c is the
response from P when it is given the challenge c).

2. Nearest-neighbour decoding: Find an encoded message
M̂ so that dist(M ′, M̂) is minimised, where dist(·, ·)
denotes the hamming distance between two vectors.

3. Output m̂ = e−1(M̂).

Theorem
Suppose that P is a proving algorithm for the Basic Scheme for
which

succ(P) > 1− d

2n
,

where the hamming distance of the encoded message space is d.
Then the Extractor will always output m̂ = m.

Example

• Suppose that Alice wants to use the Basic Scheme with
q = 210 and n = 1000 such that the minimum distance of the
encoded message space is 400.

• This will guarantee that extraction will be possible whenever
succ(P) > 0.8.

• If Alice uses a Reed-Solomon code to encode messages, then
d = n− k + 1, where k is the dimension of the code.

• Therefore, k = 601, so the message expansion is

1000

601
≈ 1.67.

• The size of a challenge is log2 n = 10 bits and the size of a
response is log2 q = 10 bits.

Generalisation

We can consider arbitrary challenge-response protocols, where a
challenge will be chosen from a specified challenge space Γ, and
the response will be an element of a response space ∆. The
response code consists of all |Γ|-tuples of elements from ∆ that are
obtained as correct responses for some encoded message M . We
can prove a straightforward generalisation of the previous theorem.

Theorem
Suppose that P is a proving algorithm for a General POR Scheme
for which

succ(P) > 1− d∗

2|Γ|
,

where the hamming distance of the response code is d∗. Then the
Extractor based on nearest neighbour decoding will always output
m̂ = m.

Multiblock Challenge Scheme

• Here, a challenge specifies ` indices “all at once”, say
i1 < · · · < i`.

• |Γ| =
(
n
`

)
.

• The response is the `-tuple (mi1 , . . . ,mi`).

• If the hamming distance of the encoded message space is d,
then the hamming distance of the response code is

d∗ =

(
n

`

)
−
(
n− d
`

)
.

• Therefore, extraction succeeds if

succ(P) >
1

2
+

(
n−d
`

)
2
(
n
`

) .

Linear Combination Scheme
• A challenge V is a vector in (Fq)

n having hamming weight
equal to `.

• The response is

V ·M =

n∑
i=1

vimi mod q.

• |Γ| =
(
n
`

)
(q − 1)` and |∆| = q.

• If the hamming distance of the encoded message space is d,
then a very accurate estimate for the hamming distance of the
response code is

d∗ ≈ (q − 1)`+1

q

((
n

`

)
−
(
n− d
`

))
.

• Therefore, extraction succeeds if

succ(P) >
1

2
+

1

2

(
1

q
+

(q − 1)
(
n−d
`

)
q
(
n
`

))
.

Comparison

• The Linear Combination Scheme has much smaller responses
than the Multiblock Challenge Scheme (Fq as opposed to
(Fq)

`).

• However, the Linear Combination Scheme has a larger
challenge space than the Multiblock Challenge Scheme
(
(
n
`

)
(q − 1)` as opposed to

(
n
`

)
).

• The relative distance of the response codes of the two
schemes are very similar, so the security guarantees of the two
schemes are also very similar.

Example

• Suppose that Alice wants to use the Linear Combination
Scheme with q ≥ 210 and n = 1000.

• Her goal is that extraction will be possible whenever
succ(P) > 0.8.

• Here, d = 50 and ` = 10 will work.

• If Alice uses a Reed-Solomon code to encrypt messages, then
k = 951, so the message expansion is

1000

951
≈ 1.05.

• The size of a challenge is 178 bits and the size of a response
is log2 q = 10 bits.

Estimating the success probability of a prover

• We have proven that extraction is possible provided that
succ(P) is sufficiently close to 1.

• In general, the only way to determine the exact value of
succ(P) is to query P with all the possible challenges (as is
done during extraction).

• In practice, we would like to be able to estimate succ(P)
based on a relatively small number of challenges.

• This can be done using classical statistical techniques such as
hypothesis testing and confidence intervals.

Hypothesis testing for the Basic Scheme

• We know that extraction will be successful in the Basic
Scheme if

succ(P) ≥
n− bd2c+ 1

n
.

• Denote ω = n− bd2c+ 1.

• We wish to distinguish the null hypothesis

H0 : succ(P) ≤ ω − 1

n
;

from the alternative hypothesis

H1 : succ(P) ≥ ω

n
.

• If we reject the null hypothesis H0, then we believe that
extraction is possible.

Hypothesis testing for the Basic Scheme (cont.)

• Suppose there are g correct responses in t trials.

• For simplicity, assume the challenges are chosen uniformly at
random with replacement.

• The condition for rejecting the null hypothesis at a 5%
significance level is

t∑
i=g

(
t

i

)(
ω − 1

n

)i(n− ω + 1

n

)t−i
< 0.05.

• If this condition holds, then we are quite confident that
successful extraction is possible.

Example

• Suppose that Alice using the Basic Scheme with n = 1000
and the minimum distance of the encoded message space is
400.

• Then extraction is possible whenever succ(P) > 0.8.

• Suppose the server responds to 100 challenges that have been
chosen uniformly with replacement, and that 87 of the
responses were correct.

• We find that

100∑
i=87

(
100

i

)
0.8i 0.2100−i ≈ 0.047 < 0.05.

• There is sufficient evidence to reject the null hypothesis at the
5% significance level, and so we conclude that the file can be
reconstructed by an extractor.

A new lower bound on storage and communication

• Suppose that M is a random variable corresponding to a
randomly chosen unencoded message m.

• Let V be a random variable denoting any information stored
by Alice

• Let R be a random variable corresponding to the information
provided by a black-box Extractor .

• Suppose that the message can be reconstructed by the
Extractor with probability 1

• Then
H(M|V,R) = 0,

from which it follows that

H(M) ≤ H(V) +H(R).

Lower bound (cont.)

• Naor and Rothblum proved a lower bound for a weaker form
of POR-type protocol, termed an an authenticator.

• The Naor-Rothblum bound also applies to POR schemes.

• Phrased in terms of entropy, their bound states that

H(M) ≤ H(V)×H(R),

which is a weaker bound than the one we proved above.

Thank you for your attention!

Our results can be found in the preprint

A coding theory foundation for the analysis of general
unconditionally secure proof-of-retrievability schemes for cloud

storage

which will shortly appear on the IACR eprint archive. This preprint
also contains a treatment of unconditionally secure keyed (i.e.,
unbounded-use) POR schemes.

