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(t,n)-Threshold Schemes

We informally define a (¢, n)-threshold scheme.
Let ¢ and n be positive integers, ¢t < n.
A secret K is “split” into n shares, denoted s1, ... , Sp.

The following two properties should hold:
1. a reconstruction algorithm can be used to reconstruct the
secret, given any t of the n shares,
2. no t — 1 shares reveal any information as to the value of the
secret.
Threshold schemes were invented independently by Blakley
and Shamir in 1979.

Shamir's threshold scheme is based on polynomial
interpolation over Z,, where p > n + 1 is prime.

It is really a Reed-Solomon code in disguise.
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Shamir Threshold Scheme

In an initialization phase, x1,x9,..., T, are defined to be n
distinct non-zero elements of Z,,.

the dealer gives z; to user U;, for all 7, 1 < i < mn.
The z;'s are public information.

For a given secret K € Z,, shares are created as follows:

1. Let a(z) € Zy[z] be a random polynomial of degree at most
t — 1, such that the constant term is the secret, K.

2. For 1 < i <m, the share s; = a(x;) (so the shares are
evaluations of the polynomial a(z) at n non-zero points).

Suppose we have t shares s;. = a(z;;), 1 <j <t

Since a(z) is a polynomial of degree at most ¢t — 1, we can
determine a(x) by Lagrange interpolation.

Then K is computed by substituting = 0 into a(z).



Repairability

Suppose that an arbitrary user Uy (in a (¢, n)-threshold
scheme, say) loses their share.
The goal is to find a secure protocol, involving Uy and a

subset of the other users, that allows the missing share s, to
be reconstructed.

We are considering a setting where the dealer is no longer
present in the scheme after the initial setup.
We will assume secure pairwise channels linking pairs of users.

Three techniques for repairing shares:

1. the enrollment scheme (Nojoumian, 2012)
2. secure regenerating codes (Shah, Rashmi and Kumar, 2011)
3. combinatorial schemes (Stinson and Wei, 2018)

For a survey of these techniques, see (Laing and Stinson,
2018).

In this talk, we discuss the third technique.



Repairable Threshold Schemes

A (t,n,d)-repairable threshold scheme, which we
abbreviate to (¢,n,d)-RTS, is a (¢,n)-threshold scheme
which permits the share of an arbitrary user P, to be repaired
as follows.

Certain subsets of d users (not including P;) send a message
to .

The messages received by P, allow P;'s share to be
reconstructed.

We note that d > t is an obvious necessary condition for
the existence of such a scheme.

If t — 1 users could repair a share, then they would have t
shares and they could reconstruct the secret, which is not
allowed.
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Goals of Combinatorial Repairability

e Our method employs a base scheme in which users receive
multiple shares.

e A certain distribution design specifies which shares are given
to which users.
e We study three problems:

1.

2.

Thresholds: What properties of the distribution design ensure
that the resulting scheme is in fact a (¢,n,d)-RTS?
Scalability: How can we accommodate various numbers of
users from one specific distribution design?

Reliability: What can we say about the probability of
successful repair, in a scenario where users are available with
some probability p?

6

32



A Combinatorial RTS based on a (9, 3,1)-BIBD

As an example, we construct a (2,12, 3)-RTS.

Start with a (9, 3,1)-BIBD (an affine plane of order 3),
which has 12 blocks.

This is the distribution design, which is public.

We associate a block of the design with each user:

U, & {1,2,3} U, + {4,5,6} Us « {7,8,9}

Uy < {1,4,7} Us < {2,5,8} Us < {3,6,9}

U; < {1,5,9} Us < {2,6,7} Uy < {3,4,8}
Uy & {1,6,8} Ui & {2,4, 9} Uiz & {3,5,7}
Each user gets three shares from a (5,9)-threshold scheme
(the base scheme), as specified by the associated block.
This threshold scheme has nine shares, denoted s1, ..., sg.

Each block lists the indices of shares held by a given user.
Thus U7 has the shares s1, s and s3, etc.
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Thresholds

e The base scheme has threshold equal to 5.
e The resulting RTS has threshold equal to 2.

e This is explained as follows:

Any two blocks of the distribution design contain at least
five points, whereas one block contains only three points.

e Therefore, in the resulting RTS, any two users can
reconstruct the secret, since they (collectively) have at least
five distinct shares from the base scheme.

e However, one user cannot reconstruct the secret, because it
only has three shares from the base scheme (which is less
than the required threshold of five shares).



Repairability

e When a user wants to repair their share, they contact d = 3
other users who have the relevant subshares.

e For example, Uy could contact Uy to obtain subshare #1, Us
to obtain subshare # 2 and Ujs to obtain subshare #3:

U +{1,2,3} Us + {4,5,6} Us + {7,8,9}
Uy + {1,4,7} Us « {2,5,8} Us < {3,6,9}
Ur + {1,5,9} Us < {2,6,7} Uy < {3,4,8}
Ui < {1,6,8} Ui < {2,4,9} Uiz < {3,5,7}



Scalability

The described RTS is a scheme for 12 users, where 12 is the
number of blocks in the distribution design.

We can use a subset of the 12 blocks, and thereby reduce the
number of users, provided that we can still repair shares.

It suffices to choose a subset of blocks such that each point is
a contained in at least two blocks.

Here, we can take the first six blocks, along with any subset
of the last six blocks.

This allows us to construct a (2, m, 3)-RTS for any

m € {6,...,12}.

Note that the first six blocks comprise two parallel classes of
the design, so every point occurs exactly twice in these blocks.
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Required Properties of a Distribution Design

In order to be able to construct an RTS with threshold ¢, the
distribution design must satisfy the property that

the number of points in the union of any ¢ blocks is greater
than the number of points in the union of any ¢ — 1 blocks.

In order to provide scalability, (i.e., construct an RTS for a
variable number of users), we identify a “small” basic repairing
set, i.e.,

a set of blocks in the distribution design such that every point
is contained in at least two of these blocks.

Remark: As in the previous example, taking two parallel classes
from a resolvable design will yield a basic repairing set of
minimum possible size.
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Projective Planes as Distribution Designs

Lemma 1
The union of any t — 1 blocks (lines) in a projective plane of order
q contain at most g(t — 1) + 1 points.

Proof.
Denote the t — 1 lines by Ay, ..., A;—2. Each A; (i > 1) contains
a point in Ay, so

t—2

U

1=0

<qg+1+(t—-2)g=q(t—1)+1.

O

Remark: Equality occurs if and only if the t — 1 lines all contain a
common point.
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Projective Planes as Distribution Designs (cont.)

Lemma 2
Fort < g+ 1, the union of any t lines in a projective plane of order
q contain at least t(q +1 — (t — 1)/2) points.

Proof.

Denote the ¢ lines by Ay,..., A;—1. Each A; contains ¢ +1 —i

points that are not in U;«;lo Ap,. It follows that

t—1

>3 (g +1—i) =tg+1) -
0

1=

tt— 1)

t—1
A; 5

U

=0

O

Remark: Equality occurs if and only if no three of the ¢ lines are
collinear, so they form the dual of a t-arc.
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Example

Consider a projective plane of order 5.
One block contains 6 points.

Two blocks contain 11 points.

Three blocks contain at least 15 and at most 16 points.

Four blocks contain at least 18 and at most 21 points.
Five blocks contain at least 20 points.
We can construct RTS with the following thresholds:

e ¢ =2 (since 6 < 11),

e ¢t =3 (since 11 < 15), and

e t =4 (since 16 < 18)

However ¢t = 5 does not work (because 21 > 20).
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Basic Repairing Sets in Projective Planes

Recall that a basic repairing set is a subset of blocks (lines)
that contains every point at least twice.

In the context of a projective plane, this is precisely the dual
of a 2-blocking set (see, e.g., Ball and Blokhuis, 1996).

A simple construction: Choose any three noncollinear points
x, y and z of the projective plane, and take all the lines that
contain at least one of these points. This yields a basic
repairing set of size 3q.

Another construction: Suppose that ¢ is a square of a prime
power. Start with two disjoint Baer subplanes in PG(2, q)
and take all the lines that contain a line from either of these
two subplanes. This yields a basic repairing set of size

2(qg+ Va+ 1), which is an improvement asymptotically over
the previous construction.
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More Efficient Repairing

Suppose we use a t-design with ¢ > 2 as a distribution design.
This could permit a more efficient repairing process.

For example, suppose we use a 3-(v, 4, 1)-design (a Steiner
quadruple system).

Since some pairs of blocks intersect in two points, a user's
share (which consists of four subshares) could be repaired
using information supplied by two other users, each of which
contributes two subshares.

This reduces the number of messages sent (but not the total
size of the messages).

It could also have a positive effect on the reliability of the
scheme (to be discussed a bit later).

Two blocks contain at least six points, and one block contains
four points.

Therefore, because 6 > 4, we obtain a (2,n,2)-RTS, where n
is the number of blocks in the design.

16
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The 3-(8,4,1)-design

A+ {1,2,3,4) Ay + {5,6,7,8}
By < {1,2,5,6} By + {1,2,7,8}
Bs + {1,3,5,7} By + {1,3,6,8}
Bs < {1,4,5,8} Bg + {1,4,6,7}
Br < {3,4,7,8} Bs <+ {3,4,5,6}
By < {2,4,6,8} Byy < {2,4,5,7}
Bi1 + {2,3,6,7} Biy ¢ {2,3,5,8}

e Suppose A; wants to repair their share.

e They could contact B; to get subshares # 1 and # 2, and
By to get subshares # 3 and # 4.

17 /32



A Network Reliability Model

When a user contacts other users in an attempt to repair their
share, the other users may not be available.

Suppose that each user is available with probability p and
unavailable with probability g = 1 — p, independent of any
other users.

We consider two interesting and natural questions that arise
when a user wants to repair their share:

1. What is the probability R(p) that there is at least one set of
available users that can repair the given share?

2. What is the expected number £(p) of (minimal) sets of
available users that can repair the given share?

R(p) and E(p) are reliability polynomials in the variable p
(or q).
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Repairing RTS Based on BIBDs with A =1

Suppose a fixed user Uy wants to repair a share corresponding
to the block {z1,...,z4}.

Each point of the BIBD isin » = (v — 1) /(k — 1) blocks.
For 1 <4 <k, there are r — 1 users other than U, who has
subshare # x;; call this subset U/ (x;).

The subsets U(z1), ... , U(xy) are disjoint.

Consider the (9,3,1)-BIBD:

Ui + {1,2,3} Us <> {4,5,6} Us <> {7,8,9}

Uy > {1,4,7} Us < {2,5,8} Us <> {3,6,9}

Ur + {1,5,9} Ug < {2,6,7} Uy <> {3,4,8}

UlO A {1’678} Ull A {2’4’9} U12 A {3757 7}
Suppose U; wants to repair their share.

Then Lt(l) = {U4, U7, Ul()}, L((2) = {U5, Ug, Ull} and
U(3) = {Us, Uy, Us2}
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Repairing RTS Based on BIBDs with A = 1 (cont.)

e The probability that at least one user in a specific U(z;) is
available is 1 — ¢3.

e R(p) is the probability that at least one user in every U(x;) is
available, so we have

R(p) = (1 - ¢°)°.

e Computing the expected number of minimal repairing sets is
even easier; it follows from linearity of expectation that

E(p) = (3p)°.
e In general, for a (v, k,1)-BIBD, we have
R(p) =(1—q" )"

and
E(p) = ((r — 1)p)*.
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Repairing RTS Based on Steiner Quadruple Systems

e For SQS, the situation is more complicated, as there are
various types of repairing sets to consider.

e A minimal repairing set could have size 2, 3 or 4.

e A standard technique from network reliability proves useful in
computing the reliability polynomials.

e A cut is a minimal set of users with the property that
repairing is impossible if all the users in the cut are
unavailable; in this case we say that the cut fails.

e Suppose a user Uy wants to repair a share corresponding to
the block {z1,...,x}; then the cuts are U(x;), 1 <i < k.

e The cuts for an SQS are not disjoint.
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Cuts in the 3-(8,4,1)-design

A;  {1,2,3,4}
By + {1,2,5,6}
Bs < {1,3,5,7}
Bs +» {1,4,5,8}
B; + {3,4,7,8}
By < {2,4,6,8}
B+ {2,3,6,7}

Ay > {5,6,7,8}
By +{1,2,7,8}
By +{1,3,6,8}
Bs <> {1,4,6,7}
Bs +» {3,4,5,6}
Bio ¢ {2,4,5,7}
Biy ¢ {2,3,5,8}

Suppose A wants to repair their share; then

u(l) = {BI?B2?B33B4aB5aB6}
U(2) = { B, Bz, By, B1g, B11, B12}
L{(3) = {337B47B77 BSaB117B12}
U(4) = {Bs, Bg, Br, Bg, By, B1o}.
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Computing R(p) for the 3-(8, 4, 1)-design

Repairing fails if and only if at least one of the four cuts
fails, so we can compute R(p) using the principle of
inclusion-exclusion (PIE).

|tL(2)| = 6 for all i, so the probability that a cut ¢(i) fails is
q® (recall g =1 —p).

The probability that two given cuts both fail is ¢g'?, because
UGE)UU(F)| =10forall 1<i<j<A4

The probability that three or four given cuts all fail is g'2.
Applying PIE, we obtain

- (o (- ()

R(p) =1 —4q°® + 6¢'° — 3¢'%.

Hence,
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Graphing R(p) for 2-(13,4,1), 2-(16,4,1), and

Repairing probability R(p)

1,,
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0.2 |

3-(10, 4, 1)-designs

Y

0

02 04 06 08
Probability p that a user is available
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Computing £(p) for the 3-(10,4, 1)-design

Ap < {1,2,4,5}  By+{1,2,3,7%  Co+ {1,3,58}
A1 {2,3,5,6} By < {2,3,4,88  Ci+ {2,4,6,9}
Ay {3,4,6,7F By < {3,4,5,9}  Cy ¢ {3,5,7,0}
Ay {4,5,7,8Y By {4,5,6,01  Cs ¢ {4,6,8,1}
Ay {5,6,8,9} By {5671}  Ci+ {57,9,2}
As <+ {6,7,9,0}  Bs < {6,7,8,2}  Cs+ {6,8,0,3}
Ag + {7,8,0,1}  Bg+ {7,8,9,3}  Cs ¢ {7,9,1,4}
A7 < {8,9,1,2}  Br+ {8,9,0,41  C:+ {8,0,2,5}
Ag+{9,0,2,3}  Bg< {9,0,1,5}  Cs+ {9,1,3,6}
Ay {0,1,3,4} By« {0,1,2,6}  Cy < {0,2,4,7}

This design has a cyclic automorphism generated by
x — x + 1 mod 10.
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Computing £(p) for the 3-(10,4, 1)-design: minimal
repairing sets of size two

e Suppose we want to repair the block Ay = {1,2,4,5}.

We consider minimal repairing sets of sizes two, three and
four.
e A repairing set of size two consists of

e a block containing 1,2 and a block containing 4, 5; or
e a block containing 1,4 and a block containing 2, 5; or
e a block containing 1,5 and a block containing 2, 4.

The total number of choices is 3 x 3 x 3 = 27.

Therefore, the expected number of repairing sets of size two is
27p2.
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Minimal repairing sets of size two

A ¢ {1,2,4,5}
A; < {2,3,5,6)
As < {3,4,6,7}
Az < {4,5,7,8}
Ay + {5,6,8,9}
As + {6,7,9,0}
Ag <+ {7,8,0,1}
A7 < {8,9,1,2}
Ag +» {9,0,2,3}
Ag < {0,1,3,4}

By > {1,2,3,7}
B; < {2,3,4,8}
B; <+ {3,4,5,9}
Bs <> {4,5,6,0}
By {5,6,7,1}
Bs < {6,7,8,2}
B + {7,8,9,3}
Br > {8,9,0,4}
Bs +» {9,0,1,5}
By ++ {0,1,2,6}

Co < {1,3,5,8}
Cy < {2,4,6,9}
Cy <+ {3,5,7,0}
Cs 4> {4,6,8,1}
Cy ¢ {5,7,9,2}
Cs + {6,8,0,3)
Co > {7,9,1,4}
Cr < {8,0,2,5}
Cs < {9,1,3,6}
Co > {0,2,4,7}
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Minimal repairing sets of size four

A minimal repairing set of size four consists of four blocks
having the following form:

e a block containing 1, but none of 2,4,5
e a block containing 2, but none of 1,4,5
e a block containing 4, but none of 1,2,5
e a block containing 5, but none of 1,2,4

There are two choices for each of these four blocks.
The total number of choices is 2% = 16.

Therefore, the expected number of minimal repairing sets of
size four is 16p®.
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Minimal repairing sets of size four (cont.)

Ag & {1,2,4,5}
A; < {2,3,5,6)
A < {3,4,6,7}
Az < {4,5,7,8}
Ay {5,6,8,9}
As + {6,7,9,0}
Ag <> {7,8,0,1}
A7 > {8,9,1,2}
Ag + {9,0,2,3}
Ag < {0,1,3,4}

By + {1,2,3,7}
B; < {2,3,4,8}
By <+ {3,4,5,9}
Bs + {4,5,6,0}
By {5,6,7,1}
Bs < {6,7,8,2}
Bs < {7,8,9,3}
Br < {8,9,0,4}
Bs < {9,0,1,5}
By < {0,1,2,6}

Co < {1,3,5,8}
Cy < {2,4,6,9}
Cy > {3,5,7,0}
C3 <> {4,6,8,1}
Cy < {5,7,9,2}
C5 + {6,8,0,3}
Cs <> {7,9,1,4}
C7 < {8,0,2,5}
Cs < {9,1,3,6}
Cy < {0,2,4,7}
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Minimal repairing sets of size three

e A minimal repairing set of size three can have three possible
forms:
e type pair - pair - pair: three pairs intersecting in a point, e.g.,
12,14,15. There are four configurations of this type.
e type pair - pair - point: two pairs intersecting in a point, and
a disjoint point e.g., 12,14,5. There are twelve
configurations of this type.
e type pair - point - point: one pair, and two disjoint points,
e.g., 12,4,5. There are six configurations of this type.
e After some counting, the expected number of minimal
repairing sets of size three is seen to be

(4x3%4+12x3%2x24+6 x3x2%)p>=396p°.
e Therefore,

E(p) = 27p% + 396p° + 16p*.
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Summary and Open Problems

. We have a formula to compute R(p) for any t-(v, k, 1)-design.
However, we only have formulas for £(p) for

2-(v, k, 1)-designs and for 3-(v, 4, 1)-designs.

. Are there probabilistic existence results for “good”
distribution designs?

. What other types of combinatorial structures yield “good”
distribution designs?

. By using ramp schemes for the base scheme, it is possible to
get more efficient RTS for certain distribution designs; see
Stinson and Wei (2018).

. We have also been investigating how to design efficient
algorithms to find a repairing set (Kacsmar and Stinson).
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Happy Birthday Charlie!

yPRRIE VELODIES

\THE END
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