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combinatorial batch codes

Batch codes were introduced by Ishai, Kushilevitz, Ostrovsky and
Sahai at STOC 2004. We study a special case of batch codes that
we call combinatorial batch codes.

• n items

• m servers

• N:=total number of items stored

• Goal: retrieve any k items by reading at most one from each
server

• Here n = 6, m = 3, N = 9 and k = 2
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questions

Notation: (n,N, k,m) − CBC

n items, total storage N, m servers, k items read

Given n, m, k, what is the minimum possible value of N?
Denote this value by N(n, k,m).

For a fixed rate n
N

, and fixed k, what is the largest possible
value of n (as a function of m)?



incidence matrix representation

Lemma

An m × n 0-1 matrix containing exactly N ones is an incidence

matrix of an (n,N, k,m) − CBC ⇔ any k columns contain a k × k

submatrix with a transversal containing k ones.

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1se
rv

er
s

items

We view the incidence matrix as representing a set system:
point ↔ server
block ↔ set of servers containing a particular item



Hall’s marriage theorem

Theorem

Suppose (X ,B) is a set system. Then any subcollection of k

blocks B1,B2, . . . ,Bk has a system of distinct representatives

⇔ for all i , 1 ≤ i ≤ k it holds that

SDR(i) for any subcollection of i blocks Bj1,Bj2 , . . . ,Bji ∈ B

it holds that
∣

∣

∣

⋃i
l=1 Bjl

∣

∣

∣
≥ i .

The previous example corresponds to the set system containing
blocks {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.



trivial examples

• Each server stores all items: m = k, N = kn

• Each server stores one item: m = n = N. Here we have
N(n, k, n) = n.

Therefore we are only interested in examples with n < N < kn.
When k = m, we have N(n, k, k) = kn − k(k − 1).

Example: k = 4, n = 7

1 0 0 0 1 1 1

0 1 0 0 1 1 1

0 0 1 0 1 1 1

0 0 0 1 1 1 1

Next, we present a construction for batch codes where n is a bit
larger than m.



(k , p)-flying saucer

Suppose k ≡ 2 (mod 3)

• Two vertices x and y are joined by p (disjoint) paths of length
k+1
3 .

• Paths of length k−2
3 are joined to x and y .

k = 8, p = 3
x y

• number of vertices is V = (p+2)(k−2)
3 + 2.

• number of edges is E = p(k+1)
3 + 2(k−2)

3 .



constructing a CBC from a flying-saucer

Theorem

Let k, p be positive integers with k ≡ 2 (mod 3) and suppose

m ≥ V . Then there exists an (m + p,m + p + E , k,m) − CBC.

• Construct a (k, p)-FS and add isolated vertices until there are
m vertices.

• Add a loop to each isolated vertex, and to each of the vertices
of degree 1.

• Construct an incidence matrix whose rows are labelled by the
vertices and whose columns are labelled by edges.



constructing a CBC from a flying-saucer

k = 8, p = 3
x y

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

(15, 28, 8, 12)-CBC



the special case n = m + 1

Theorem

For any positive integer k, we have N(m + 1, k,m) = m + k.

• A (k, 1)-FS is just a path of length k − 1

• The construction produces an (m + 1,m + k, k,m)-CBC.

• The pigeon-hole principle can be used to show this is the best
you can do.



an optimal construction for large n

Theorem

For n ≥ (k − 1)
(

m
k−1

)

, we have

N(n, k,m) = kn − (k − 1)
(

m
k−1

)

.

Example: n = 23, m = 5, k = 3

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1

0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0



uniform batch codes with rate 1
c

A batch code is uniform if every server stores the same number of
items.
We would like to determine the maximum n for which there exists
a uniform (n, cn, k,m)-CBC; denote this number by n(m, c , k).

Theorem

n(m, c , k) ≤
(k−1)(m

c )
(k−1

c )
.

We have equality in the following cases:

• n(m, c , c + 1) = c
(

m
c

)

• n(m, c , c + 2) =
(

m
c

)



batch codes with rate 1
2

• Each block has two points → we can represent the set system
by a multigraph.

• For each i ≤ k, the graph contains no subgraphs with i edges
but fewer than i vertices.

Lemma

If there is a graph G with m vertices, n edges and girth g, then

there is a uniform (n, 2n, k,m)-CBC with k = 2g − ⌊g/2⌋ − 1 and

rate 1/2.



constructions from bipartite graphs

• A bipartite graph has girth at least 4.

• The complete bipartite graph K⌈m
2
⌉,⌊m

2
⌋ yields a uniform

(
⌈

(m2 − 1)/4
⌉

, 2
⌈

(m2 − 1/4
⌉

, 5,m)-CBC with rate 1/2.

Theorem

⌈

m2 − 1

4

⌉

≤ n(m, 2, 5) ≤

⌈

m2 + 2m − 3

4

⌉

.

The proof of the upper bound uses a result of Dirac on graphs that
contain no subgraph isomorphic to K4 − e.



d-regular graphs of large girth

Margulis 1984, Lubotzky et al. 1988 constructed d-regular graphs
with girth

g ≥
4

3

log m

log(d − 1)
−

log 4

log(d − 1)
,

where d − 1 is any prime p ≡ 1 (mod 4) and m is the number of
vertices.

Theorem

There exists a uniform (dm/2, dm, 2 log m/ log(d − 1),m)-CBC

when d − 1 ≡ 1 (mod 4) is prime.

(This CBC has n = Ω(m(k+2)/k ).)



probabilistic construction for arbitrary c

Theorem

For integers c ≥ 2, k ≥ 2 there exists a constant ac,k such that

there exists a uniform (n, cn, k,m)-CBC with n ≥ ac,kmck/(k−1)−1 ,

having rate 1/c.

Here n = Ω(mck/(k−1)−1). This improves the result in Ishai et al.

who showed that n = Ω(mc−1).



open problems

1. How close to being optimal are the constructions using flying
saucers? In particular, is it true that

N(m + p, k,m) − N(m + p − 1, k,m) ≈
k

3

when p > 1 and m is sufficiently large as a function of p and
k?

2. Are there explicit constructions for “good” uniform batch
codes with fixed rate 1/c , where c > 2 is an integer?

3. Can N(n, k,m) be computed for a range of values of n, where
n < (k − 1)

(

m
k−1

)

?



thank you for your attention!
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