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Outline

1. Introduction to frameproof codes and separating hash families.

2. Existence of small {1, w}-separating hash families over binary
alphabets.

3. Symmetric BIBDs and {1, 3}-separating hash families over
binary alphabets.



Frameproof Codes

• Let Q be a finite alphabet of size q and let N > 0.

• A subset C ⊆ QN with |C | = n is called C an (N,n, q)-code
and the members of C are called codewords.

• Each codeword x ∈ C is of the form x = (x1, . . . , xN ), where
xi ∈ Q, 1 ≤ i ≤ N .

• For any subset of codewords P ⊆ C , the set of descendants of
P , denoted desc(P), is defined by

desc(P) = {x ∈ QN : xi ∈ {ai : a ∈ P}, 1 ≤ i ≤ N}.

• Let C be an (N,n, q) code and let w ≥ 2 be an integer. C is
called a w-frameproof code (or w-FPC) if, for all P ⊆ C with
|P| ≤ w, we have that desc(P) ∩ C = P.



Example

• Let Q = {1, 2, 3}, N = 3, and

C = {(1, 1, 2), (2, 3, 2), (2, 1, 2), (2, 2, 2)}.

• C is a (3, 4, 3)-code.

• Let P = {(1, 1, 2), (2, 3, 2)} ⊆ C .

• Then

desc(P) = {(1, 1, 2), (2, 3, 2), (1, 3, 2), (2, 1, 2)}

• Since (2, 1, 2) ∈ desc(P) ∩ C but (2, 1, 2) 6∈ C , it follows that
C is not a 2-frameproof code.



Separating Hash Families

Definition 1
An (N ;n, q)-hash family is a set of N functions say F , such that
|X| = n, |Y | = q, and f : X → Y for each f ∈ F .

Definition 2
An SHF(N ;n, q, {w1, w2, · · · , wt}) is an (N ;n, q)-hash family, say
F , that satisfies the following property:

For any C1, C2, · · · , Ct ⊆ {1, 2, . . . , n} such that |C1| = w1,
|C2| = w2, · · · , |Ct| = wt and Ci ∩ Cj = ∅ for any i 6= j,
there exists at least one function f ∈ F such that

{f (x) : x ∈ Ci} ∩ {f (x) : x ∈ Cj} = ∅

for any i 6= j.

The type of the SHF is the multiset {w1, w2, · · · , wt}.



Matrix Representation

• An (N ;n, q)-hash family can be depicted as an N × n matrix
A on q symbols.

• The rows of A correspond to the hash functions in the family,
the columns correspond to the elements in the domain, X,
and the entry in row f and column x is just f (x).

• We call A the matrix representation of the hash family.

• It is well known that a w-frameproof (N,n, q)-code is
equivalent to an SHF (N ;n, q, {1, w}).

• The codewords are just the columns of the matrix
representation of the SHF .



Some Examples of Binary Frameproof Codes

• We will concentrate on binary frameproof codes defined over
the alphabet {0, 1}.

• A permutation matrix of degree N is an N ×N 0-1 matrix
with exactly one 1 in each row and each column

• It is obvious that a permutation matrix of degree N is a
SHF (N ;N, 2, {1, w}) for any w ≤ N − 1.

• As another example, the incidence matrix of the
(7, 3, 1)-BIBD is an SHF (7; 7, 2, {1, 2}).

• Suppose we want to separate x from y and z.

1. If x, y, z occur in a block A, then let B be any other block
that contains x.

2. If x, y, z do not occur in a block, then let B be the unique
block that contains y and z.

• One more example: the incidence matrix of the
(11, 5, 1)-BIBD is an SHF (11; 11, 2, {1, 3}).



The (7, 3, 1)-BIBD



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


• 1 is separated from 2, 4 by row 5 (i.e., the block {1, 5, 6})
• 1 is separated from 2, 3 by row 2 (i.e., the block {2, 3, 5})



Sample General Bounds for Frameproof Codes

Theorem 3 (SSW, 2001)

If there exists an SHF(N ;n, q, {1, w}), then

n ≤ w
(
qd

N
w e − 1

)
.

Comment: Stronger (and more complicated bounds) exist.

Theorem 4 (SZ, 2008)

There exists an SHF(N ;n, 2, {1, w}) if

n ≤
(
1− 1

w!

)(
2w

2w − 1

)N
w

.

Comment: This existence result uses the probabilistic method. It is
a special case of a more general bound.



Small {1, w}-SHF

Here is our Main Theorem, which characterizes {1, w}-SHF having
a “small” number of functions.

Theorem 5
For all w ≥ 3, and for w + 1 ≤ N ≤ 3w, an SHF(N ;n, 2, {1, w})
exists only if n ≤ N .
Furthermore, for these parameter values, an SHF(N ;N, 2, {1, w})
in standard form must be a permutation matrix of degree N .



Standard Form of {1, w}-SHF Over Binary Alphabets

• Suppose we have an SHF (N ;n, 2, {1, w}) over the alphabet
Q = {0, 1}.

• A row is said to be of type i if it contains exactly i entries
equal to 1.

• If we interchange the 0 and 1 entries in any row of an
SHF (N ;n, 2, {1, w}), the result is still an
SHF (N ;n, 2, {1, w}).

• An SHF (N ;n, 2, {1, w}) is said to be in standard form if
every row has type i ≤ n/2.

• The standard form of an SHF (N ;n, 2, {1, w}) is unique if n is
odd, or if n is even and there are no rows of type n/2.



A Useful Lemma

Lemma 6
Let A be an SHF(N ;n, 2, 1, w). Suppose row r of A is of type
i ≤ n/2.

1. If i < w, then row r separates exactly

i

(
n− i
w

)
column pairs (C1, C2), where |C1| = 1 and |C2| = w.

2. If i ≥ w, then row r separates exactly

i

(
n− i
w

)
+

(
i

w

)
(n− i)

column pairs (C1, C2).



Another Useful Lemma

Lemma 7
Let w, n be positive integers such that n ≥ w + 1. Then for
i = 1, 2, . . . , n− w − 1, we have

i

(
n− i
w

)
> (i+ 1)

(
n− i− 1

w

)
if and only if

(i+ 1)(w + 1) > n+ 1.

In particular, we have(
n− 1

w

)
> 2

(
n− 2

w

)
> 3

(
n− 3

w

)
> · · · > j

(
n− j
w

)
(1)

for j ≤ n− w, whenever n ≤ 2w.



The Easiest Cases: w + 1 ≤ N ≤ 2w − 1

Theorem 8
Suppose w ≥ 3, w + 1 ≤ N ≤ 2w − 1, and there exists an
SHF(N ;n, 2, {1, w}). Then n ≤ N.

Proof.
Suppose there is an SHF (N ;n = N + 1, 2, {1, w}). Let A be its
N × (N + 1) matrix representation. There are T = n

(
n−1
w

)
pairs of

column sets (C1, C2) to be separated, where |C1| = 1, |C2| = w.
Using Lemma 7, we see that(
n− 1

w

)
> 2

(
n− 2

w

)
> 3

(
n− 3

w

)
> · · · > (w−1)

(
n− (w − 1)

w

)
.

A row of type 1 separates the largest number of column pairs,
namely

(
n−1
w

)
=
(
N
w

)
. Since A has N rows, the maximum number

of column pairs that can be separated is
N
(
N
w

)
= (n− 1)

(
n−1
w

)
< T , which is a contradiction.



The Next Case: N = 2w

Theorem 9
Suppose w ≥ 3, N = 2w, and there exists an
SHF(N ;n, 2, {1, w}). Then n ≤ N.

Proof.
Suppose there is an SHF (N = 2w;n = N + 1, 2, {1, w}). We have(

n− 1

w

)
= 2

(
n− 2

w

)
> · · · > (w − 1)

(
n− (w − 1)

w

)
> w

(
n− w
w

)
+ n− w.

The last inequality can be easily checked, while all other
inequalities follow from Lemma 7. The last term is given by
Lemma 6; it corresponds to the case of a row of type w. A row of
type 1 or type 2 separates the largest number of column pairs,
namely

(
n−1
w

)
=
(
N
w

)
. The rest of the proof is as before.



The Case w = 3

• For w = 3, N ≤ 9, we have that an SHF (N ;n, 2, {1, 3})
exists only if n ≤ N and any SHF (N ;N, 2, {1, 3}) in standard
from is a permutation matrix (Main Theorem).

• There exists an SHF (11; 11, 2, {1, 3}) (in standard form) that
is not a permutation matrix, namely, the incidence matrix of
an (11, 5, 2)-BIBD. (We will prove this a bit later.)

• What about N = 10? (This is an open problem.)



SBIBDs and {1, 3}-SHF

Theorem 10
Let (X, C) be a symmetric (v, k, λ)-BIBD and let A be its
incidence matrix. If k ≥ 3λ+ 1 or if k − λ is odd, then A is an
SHF(v; v, 2, {1, 3}).

Theorem 11
Let (X, C) be a symmetric (v, k, λ)-BIBD and let A be its
incidence matrix. Suppose k ≤ 3λ and k − λ is even. Then A is an
SHF(v; v, 2, {1, 3}) if and only if the following substructure does
not occur: there exist four points u, v, w, x ∈ X such that

1. α = 3λ−k
2 blocks contain all four points u, v, w, x,

2. no block in C contains exactly one or three points from
{u, v, w, x}, and

3. for any subset of two points from {u, v, w, x}, there are
exactly λ− α blocks in C that intersect {u, v, w, x} in the
specified two points.



SBIBDs and {1, 3}-SHF (cont.)
We give an outline of the proof. First, we fix three columns u, v, w
and classify the rows of the incidence matrix as follows:

# of rows u v w

a∅ 0 0 0
aw 0 0 1
av 0 1 0
avw 0 1 1
au 1 0 0
auw 1 0 1
auv 1 1 0
auvw 1 1 1

If we denote α = auvw, then it is easy to see that

auv = avw = auw = λ− α
au = av = aw = k + α− 2λ



SBIBDs and {1, 3}-SHF (cont.)

Now consider a fourth column, say x. We want to separate {x}
from {u, v, w}. We extend our classification of the rows of the
incidence matrix as follows:

# of rows u v w x

b∅ 0 0 0 1
bw 0 0 1 1
bv 0 1 0 1
bvw 0 1 1 1
bu 1 0 0 1
buw 1 0 1 1
buv 1 1 0 1
buvw 1 1 1 1

# of rows u v w x

a∅ − b∅ 0 0 0 0
aw − bw 0 0 1 0
av − bv 0 1 0 0
avw − bvw 0 1 1 0
au − bu 1 0 0 0
auw − buw 1 0 1 0
auv − buv 1 1 0 0
auvw − buvw 1 1 1 0

Observation: We cannot separate {x} from {u, v, w} if and only if
b∅ = 0 and auvw = buvw.



SBIBDs and {1, 3}-SHF (cont.)
Assume b∅ = 0 and auvw = buvw. We have

b∅ + bu + bv + bw + buv + bvw + buw + buvw = k

bu + buv + buw + buvw = λ

bv + buv + bvw + buvw = λ

bw + buw + bvw + buvw = λ.

Therefore

bu + bv + bw + buv + bvw + buw = k − α

bu + bv + bw + 2( buv + bvw + buw ) = 3(λ− α).

Let B1 = bu + bv + bw and B2 = buv + bvw + buw. Then

B1 = α+ 2k − 3λ

B2 = 3λ− k − 2α.



SBIBDs and {1, 3}-SHF (cont.)

Using the facts that
B2 ≥ 0

and
B1 ≤ au + av + aw = 3(k + α− 2λ),

it turns out that

α =
3λ− k

2
.

Since α is a non-negative integer, this proves Theorem 9. Theorem
10 follows from further examination of the equations relating the
a’s and b’s.

Comment: Theorem 9 immediately shows that the incidence
matrix of an (11, 5, 2)-BIBD is an SHF (11; 11, 2, {1, 3}), because
3λ− k = 1 is odd.



The Case k = 3λ

• When k = 3λ, we have that α = 0 and the substructure
consists of four points.

• In this case, every block meets the substructure in 0 or two
points.

• The substructure is in fact an oval in the SBIBD, as defined
by Assmus and van Lint (1979).

• Theorem 11 says that an SBIBD with k = 3λ is a {1, 3}-SHF
if and only if the BIBD does not contain an oval.



Some Examples when k = 3λ

• There is a unique (7, 3, 1)-BIBD up to isomorphism. The
complement of any block is an oval. Therefore the
(7, 3, 1)-BIBD is not a {1, 3}-SHF . (Comment: this also
follows from our Main Theorem.)

• There are precisely three nonisomorphic (16, 6, 2)-BIBDs. It is
observed in Assmus and van Lint (1979) that all three of
these designs contain ovals. Therefore, no (16, 6, 2)-BIBD is a
{1, 3}-SHF .

• It is observed in Assmus and van Lint (1979) that there is a
(25, 9, 3)-BIBD that contains an oval. Therefore this BIBD is
not a {1, 3}-SHF .



Hadamard Designs and {1, 3}-SHF

We use the doubling construction for Hadamard matrices to
construct Hadamard designs that are not {1, 3}-frameproof codes.

Theorem 12
Let Hn be a standardized Hadamard matrix of order n. Let

H =

(
Hn Hn

Hn −Hn

)
.

Replace all −1’s in H by 0’s and let A be the (2n− 1)× (2n− 1)
submatrix obtained by removing the first column and first row.
Then A is the incidence matrix of a symmetric
(2n− 1, n− 1, n−22 )-BIBD that is not an
SHF(2n− 1; 2n− 1, 2, {1, 3}).



More About Hadamard Designs and {1, 3}-SHF

• We have verified by computer that the Hadamard designs
obtained from the quadratic residues in Fq are {1, 3}-SHF
when q = 23, 27, 31 and 47.

• The doubling construction from the previous slide yields
Hadamard designs (for some of these parameters) that are not
{1, 3}-SHF .

• These are currently the only parameter cases for which we
know that there exist SBIBDs that are {1, 3}-SHF as well as
SBIBDs that are not {1, 3}-SHF .



Open Problems

• Can our Main Theorem be extended so it holds for some
values N > 3w?

• For which parameter sets do there exist symmetric
(v, k, λ)-BIBDs that are {1, 3}-SHF as well as symmetric
BIBDs that are not {1, 3}-SHF ?

• Find examples of symmetric (v, k, λ)-BIBDs that are
{1, w}-SHF , where w > 3.

• What can we say about non-symmetric BIBDs?

• Can we give nice bounds and characterizations of small SHF
for other types, e.g., {2, w}-SHF ?

• Do any of these results generalize in a nice way to non-binary
alphabets?
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Thank You For Your Attention and
Happy 70th Birthday to Hadi!


