New Results on Binary Frameproof Codes

Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo

> ADTHM 2014 July 9, 2014

This talk is based on joint work with Chuan Guo and Tran van Trung.

Outline

- 1. Introduction to frameproof codes and separating hash families.
- 2. Existence of small $\{1, w\}$ -separating hash families over binary alphabets.
- 3. Symmetric BIBDs and $\{1,3\}$ -separating hash families over binary alphabets.

Frameproof Codes

- Let Q be a finite alphabet of size q and let N > 0.
- A subset C ⊆ Q^N with |C| = n is called C an (N, n, q)-code and the members of C are called codewords.
- Each codeword $x \in C$ is of the form $x = (x_1, \ldots, x_N)$, where $x_i \in Q$, $1 \le i \le N$.
- For any subset of codewords P ⊆ C, the set of descendants of P, denoted desc(P), is defined by

$$desc(P) = \{ x \in Q^N : x_i \in \{ a_i : a \in P \}, \ 1 \le i \le N \}.$$

Let C be an (N, n, q) code and let w ≥ 2 be an integer. C is called a w-frameproof code (or w-FPC) if, for all P ⊆ C with |P| ≤ w, we have that desc(P) ∩ C = P.

Example

• Let
$$Q = \{1, 2, 3\}$$
, $N = 3$, and

 $C = \{(1,1,2), (2,3,2), (2,1,2), (2,2,2)\}.$

• Let
$$P = \{(1, 1, 2), (2, 3, 2)\} \subseteq C$$
.

Then

$$desc(P) = \{(1,1,2), (2,3,2), (1,3,2), (2,1,2)\}$$

Since (2,1,2) ∈ desc(P) ∩ C but (2,1,2) ∉ C, it follows that C is not a 2-frameproof code.

Separating Hash Families

Definition 1 An (N; n, q)-hash family is a set of N functions say \mathcal{F} , such that |X| = n, |Y| = q, and $f : X \to Y$ for each $f \in \mathcal{F}$.

Definition 2 An $SHF(N; n, q, \{w_1, w_2, \dots, w_t\})$ is an (N; n, q)-hash family, say \mathcal{F} , that satisfies the following property:

For any $C_1, C_2, \dots, C_t \subseteq \{1, 2, \dots, n\}$ such that $|C_1| = w_1$, $|C_2| = w_2, \dots, |C_t| = w_t$ and $C_i \cap C_j = \emptyset$ for any $i \neq j$, there exists at least one function $f \in \mathcal{F}$ such that $\{f(x) : x \in C_i\} \cap \{f(x) : x \in C_j\} = \emptyset$ for any $i \neq j$.

The type of the *SHF* is the multiset $\{w_1, w_2, \cdots, w_t\}$.

Matrix Representation

- An (N; n, q)-hash family can be depicted as an $N \times n$ matrix A on q symbols.
- The rows of A correspond to the hash functions in the family, the columns correspond to the elements in the domain, X, and the entry in row f and column x is just f(x).
- We call A the matrix representation of the hash family.
- It is well known that a *w*-frameproof (N, n, q)-code is equivalent to an $SHF(N; n, q, \{1, w\})$.
- The codewords are just the columns of the matrix representation of the *SHF*.

Some Examples of Binary Frameproof Codes

- We will concentrate on binary frameproof codes defined over the alphabet $\{0, 1\}$.
- A permutation matrix of degree N is an $N\times N$ 0-1 matrix with exactly one 1 in each row and each column
- It is obvious that a permutation matrix of degree N is a $S\!H\!F(N;N,2,\{1,w\})$ for any $w\leq N-1.$
- As another example, the incidence matrix of the (7,3,1)-BIBD is an $SHF(7;7,2,\{1,2\})$.
- Suppose we want to separate x from y and z.
 - 1. If x, y, z occur in a block A, then let B be any other block that contains x.
 - 2. If x, y, z do not occur in a block, then let B be the unique block that contains y and z.
- One more example: the incidence matrix of the (11, 5, 1)-BIBD is an $SHF(11; 11, 2, \{1, 3\})$.

The (7,3,1)-BIBD

- 1 is separated from 2, 4 by row 5 (i.e., the block $\{1, 5, 6\}$)
- 1 is separated from 2, 3 by row 2 (i.e., the block $\{2, 3, 5\}$)

Sample General Bounds for Frameproof Codes

Theorem 3 (SSW, 2001) If there exists an $SHF(N; n, q, \{1, w\})$, then

$$n \le w \left(q^{\left\lceil \frac{N}{w} \right\rceil} - 1 \right).$$

Comment: Stronger (and more complicated bounds) exist. Theorem 4 (SZ, 2008) There exists an $SHF(N; n, 2, \{1, w\})$ if

$$n \le \left(1 - \frac{1}{w!}\right) \left(\frac{2^w}{2^w - 1}\right)^{\frac{N}{w}}.$$

Comment: This existence result uses the probabilistic method. It is a special case of a more general bound.

Small $\{1, w\}$ -SHF

Here is our Main Theorem, which characterizes $\{1,w\}\text{-}SHF$ having a "small" number of functions.

Theorem 5 For all $w \ge 3$, and for $w + 1 \le N \le 3w$, an $SHF(N; n, 2, \{1, w\})$ exists only if $n \le N$. Furthermore, for these parameter values, an $SHF(N; N, 2, \{1, w\})$ in standard form must be a permutation matrix of degree N.

Standard Form of $\{1, w\}$ -SHF Over Binary Alphabets

- Suppose we have an $S\!H\!F(N;n,2,\{1,w\})$ over the alphabet $Q=\{0,1\}.$
- A row is said to be of type *i* if it contains exactly *i* entries equal to 1.
- If we interchange the 0 and 1 entries in any row of an $SHF(N;n,2,\{1,w\}),$ the result is still an $SHF(N;n,2,\{1,w\}).$
- An $SHF(N; n, 2, \{1, w\})$ is said to be in standard form if every row has type $i \le n/2$.
- The standard form of an $SHF(N; n, 2, \{1, w\})$ is unique if n is odd, or if n is even and there are no rows of type n/2.

A Useful Lemma

Lemma 6

Let A be an SHF(N; n, 2, 1, w). Suppose row r of A is of type $i \leq n/2$.

1. If i < w, then row r separates exactly

$$i\binom{n-i}{w}$$

column pairs (C_1, C_2) , where $|C_1| = 1$ and $|C_2| = w$. 2. If $i \ge w$, then row r separates exactly

$$i\binom{n-i}{w} + \binom{i}{w}(n-i)$$

column pairs (C_1, C_2) .

Another Useful Lemma

Lemma 7

Let w, n be positive integers such that $n \ge w + 1$. Then for i = 1, 2, ..., n - w - 1, we have

$$i\binom{n-i}{w} > (i+1)\binom{n-i-1}{w}$$

if and only if

$$(i+1)(w+1) > n+1.$$

In particular, we have

$$\binom{n-1}{w} > 2\binom{n-2}{w} > 3\binom{n-3}{w} > \dots > j\binom{n-j}{w}$$
(1)

for $j \leq n - w$, whenever $n \leq 2w$.

The Easiest Cases: $w + 1 \le N \le 2w - 1$

Theorem 8

Suppose $w \ge 3$, $w + 1 \le N \le 2w - 1$, and there exists an $SHF(N; n, 2, \{1, w\})$. Then $n \le N$.

Proof.

Suppose there is an $SHF(N; n = N + 1, 2, \{1, w\})$. Let A be its $N \times (N + 1)$ matrix representation. There are $T = n \binom{n-1}{w}$ pairs of column sets (C_1, C_2) to be separated, where $|C_1| = 1$, $|C_2| = w$. Using Lemma 7, we see that

$$\binom{n-1}{w} > 2\binom{n-2}{w} > 3\binom{n-3}{w} > \dots > (w-1)\binom{n-(w-1)}{w}.$$

A row of type 1 separates the largest number of column pairs, namely $\binom{n-1}{w} = \binom{N}{w}$. Since A has N rows, the maximum number of column pairs that can be separated is $N\binom{N}{w} = (n-1)\binom{n-1}{w} < T$, which is a contradiction.

The Next Case: N = 2w

Theorem 9 Suppose $w \ge 3$, N = 2w, and there exists an $SHF(N; n, 2, \{1, w\})$. Then $n \le N$.

Proof.

Suppose there is an ${\it SHF}(N=2w;n=N+1,2,\{1,w\}).$ We have

$$\binom{n-1}{w} = 2\binom{n-2}{w} > \dots > (w-1)\binom{n-(w-1)}{w}$$
$$> w\binom{n-w}{w} + n - w.$$

The last inequality can be easily checked, while all other inequalities follow from Lemma 7. The last term is given by Lemma 6; it corresponds to the case of a row of type w. A row of type 1 or type 2 separates the largest number of column pairs, namely $\binom{n-1}{w} = \binom{N}{w}$. The rest of the proof is as before.

The Case w = 3

- For w = 3, N ≤ 9, we have that an SHF(N; n, 2, {1,3}) exists only if n ≤ N and any SHF(N; N, 2, {1,3}) in standard from is a permutation matrix (Main Theorem).
- There exists an SHF(11;11,2,{1,3}) (in standard form) that is not a permutation matrix, namely, the incidence matrix of an (11,5,2)-BIBD. (We will prove this a bit later.)
- What about N = 10? (This is an open problem.)

SBIBDs and $\{1,3\}$ -SHF

Theorem 10 Let (X, C) be a symmetric (v, k, λ) -BIBD and let A be its incidence matrix. If $k \ge 3\lambda + 1$ or if $k - \lambda$ is odd, then A is an SHF $(v; v, 2, \{1, 3\})$.

Theorem 11

Let (X, C) be a symmetric (v, k, λ) -BIBD and let A be its incidence matrix. Suppose $k \leq 3\lambda$ and $k - \lambda$ is even. Then A is an SHF $(v; v, 2, \{1, 3\})$ if and only if the following substructure does not occur: there exist four points $u, v, w, x \in X$ such that

- 1. $\alpha = \frac{3\lambda k}{2}$ blocks contain all four points u, v, w, x,
- 2. no block in C contains exactly one or three points from $\{u, v, w, x\}$, and
- 3. for any subset of two points from $\{u, v, w, x\}$, there are exactly $\lambda \alpha$ blocks in C that intersect $\{u, v, w, x\}$ in the specified two points.

SBIBDs and $\{1,3\}$ -SHF (cont.)

We give an outline of the proof. First, we fix three columns u, v, w and classify the rows of the incidence matrix as follows:

# of rows	u	v	w
a_{\emptyset}	0	0	0
a_w	0	0	1
a_v	0	1	0
a_{vw}	0	1	1
a_u	1	0	0
a_{uw}	1	0	1
a_{uv}	1	1	0
a_{uvw}	1	1	1

If we denote $\alpha = a_{uvw}$, then it is easy to see that

$$a_{uv} = a_{vw} = a_{uw} = \lambda - \alpha$$
$$a_u = a_v = a_w = k + \alpha - 2\lambda$$

SBIBDs and $\{1,3\}$ -SHF (cont.)

Now consider a fourth column, say x. We want to separate $\{x\}$ from $\{u, v, w\}$. We extend our classification of the rows of the incidence matrix as follows:

$\# \mbox{ of rows}$	u	v	w	x	# of rows	u	v	w	x
b_{\emptyset}	0	0	0	1	$a_{\emptyset} - b_{\emptyset}$	0	0	0	0
b_w	0	0	1	1	$a_w - b_w$	0	0	1	0
b_v	0	1	0	1	$a_v - b_v$	0	1	0	0
b_{vw}	0	1	1	1	$a_{vw} - b_{vw}$	0	1	1	0
b_u	1	0	0	1	$a_u - b_u$	1	0	0	0
b_{uw}	1	0	1	1	$a_{uw} - b_{uw}$	1	0	1	0
b_{uv}	1	1	0	1	$a_{uv} - b_{uv}$	1	1	0	0
b_{uvw}	1	1	1	1	$a_{uvw} - b_{uvw}$	1	1	1	0

Observation: We cannot separate $\{x\}$ from $\{u, v, w\}$ if and only if $b_{\emptyset} = 0$ and $a_{uvw} = b_{uvw}$.

SBIBDs and $\{1,3\}$ -SHF (cont.) Assume $b_{\emptyset} = 0$ and $a_{uvw} = b_{uvw}$. We have

$$b_{\emptyset} + b_u + b_v + b_{wv} + b_{vw} + b_{uw} + b_{uvw} = k$$
$$b_u + b_{uv} + b_{uw} + b_{uvw} = \lambda$$
$$b_v + b_{uv} + b_{vw} + b_{uvw} = \lambda$$
$$b_w + b_{uw} + b_{vw} + b_{uvw} = \lambda.$$

Therefore

$$\boxed{b_u + b_v + b_w} + \boxed{b_{uv} + b_{vw} + b_{uw}} = k - \alpha$$
$$\boxed{b_u + b_v + b_w} + 2(\boxed{b_{uv} + b_{vw} + b_{uw}}) = 3(\lambda - \alpha).$$

Let $B_1 = b_u + b_v + b_w$ and $B_2 = b_{uv} + b_{vw} + b_{uw}$. Then

$$B_1 = \alpha + 2k - 3\lambda$$
$$B_2 = 3\lambda - k - 2\alpha.$$

SBIBDs and $\{1,3\}$ -SHF (cont.)

Using the facts that

$$B_2 \ge 0$$

and

$$B_1 \le a_u + a_v + a_w = 3(k + \alpha - 2\lambda),$$

it turns out that

$$\alpha = \frac{3\lambda - k}{2}$$

Since α is a non-negative integer, this proves Theorem 9. Theorem 10 follows from further examination of the equations relating the a's and b's.

Comment: Theorem 9 immediately shows that the incidence matrix of an (11, 5, 2)-*BIBD* is an *SHF* $(11; 11, 2, \{1, 3\})$, because $3\lambda - k = 1$ is odd.

The Case $k = 3\lambda$

- When $k = 3\lambda$, we have that $\alpha = 0$ and the substructure consists of four points.
- In this case, every block meets the substructure in 0 or two points.
- The substructure is in fact an oval in the *SBIBD*, as defined by Assmus and van Lint (1979).
- Theorem 11 says that an *SBIBD* with $k = 3\lambda$ is a $\{1, 3\}$ -*SHF* if and only if the *BIBD* does not contain an oval.

Some Examples when $k = 3\lambda$

- There is a unique (7,3,1)-*BIBD* up to isomorphism. The complement of any block is an oval. Therefore the (7,3,1)-*BIBD* is not a $\{1,3\}$ -*SHF*. (Comment: this also follows from our Main Theorem.)
- There are precisely three nonisomorphic (16, 6, 2)-BIBDs. It is observed in Assmus and van Lint (1979) that all three of these designs contain ovals. Therefore, no (16, 6, 2)-BIBD is a $\{1, 3\}$ -SHF.
- It is observed in Assmus and van Lint (1979) that there is a (25,9,3)-*BIBD* that contains an oval. Therefore this *BIBD* is not a {1,3}-*SHF*.

Hadamard Designs and $\{1,3\}$ -SHF

We use the doubling construction for Hadamard matrices to construct Hadamard designs that are not $\{1, 3\}$ -frameproof codes.

Theorem 12

Let H_n be a standardized Hadamard matrix of order n. Let

$$H = \left(\begin{array}{cc} H_n & H_n \\ H_n & -H_n \end{array}\right)$$

Replace all -1's in H by 0's and let A be the $(2n-1) \times (2n-1)$ submatrix obtained by removing the first column and first row. Then A is the incidence matrix of a symmetric $(2n-1, n-1, \frac{n-2}{2})$ -BIBD that is not an $SHF(2n-1; 2n-1, 2, \{1,3\})$.

More About Hadamard Designs and $\{1,3\}$ -SHF

- We have verified by computer that the Hadamard designs obtained from the quadratic residues in \mathbb{F}_q are $\{1,3\}$ -SHF when q = 23, 27, 31 and 47.
- The doubling construction from the previous slide yields Hadamard designs (for some of these parameters) that are not $\{1,3\}$ -SHF.
- These are currently the only parameter cases for which we know that there exist *SBIBDs* that are $\{1,3\}$ -*SHF* as well as *SBIBDs* that are not $\{1,3\}$ -*SHF*.

Open Problems

- Can our Main Theorem be extended so it holds for some values N > 3w?
- For which parameter sets do there exist symmetric (v, k, λ) -BIBDs that are $\{1, 3\}$ -SHF as well as symmetric BIBDs that are not $\{1, 3\}$ -SHF?
- Find examples of symmetric (v, k, λ) -BIBDs that are $\{1, w\}$ -SHF, where w > 3.
- What can we say about non-symmetric *BIBDs*?
- Can we give nice bounds and characterizations of small SHF for other types, e.g., $\{2, w\}$ -SHF?
- Do any of these results generalize in a nice way to non-binary alphabets?

References

- [1] E.F Assmus Jr. and J.H van Lint. Ovals in projective designs. Journal of Combinatorial Theory A **27** (1979), 307–324.
- [2] Chuan Guo, Douglas R. Stinson and Tran van Trung. On tight bounds for binary frameproof codes. Preprint, 2014, http://arxiv.org/abs/1406.6920.
- [3] Chuan Guo, Douglas R. Stinson and Tran van Trung. On symmetric designs and binary frameproof codes. In preparation.

Thank You For Your Attention and Happy 70th Birthday to Hadi!

