
Query Optimization Overview

• Generally, there are many possible access plans for
processing a given query.

• The costs of these plans may differ substantially.
• The optimizer must try to choose a reasonable plan

quickly.

Pushing Selections Down
• Find the last names of the employees responsible for

projects in departments managed by employee
number ’00020’

• The expression

πLastName(σMgrNo=′00020′(E 1RespEmp=EmpNo (D 1 P)))

is equivalent to

πLastName(E 1RespEmp=EmpNo ((σMgrNo=′00020′(D)) 1 P))

Selection Pushdown

σR1.A=x(R1 1 R2) ≡ (σR1.A=x(R1) 1 R2)

Conjunctive Selection Conditions

• If a selection condition is not simple, the previous
transformation may not apply directly:

Select *
From Emp Act A, Project P
Where A.ProjNo = P.ProjNo
And A.ActNo = 10
And P.DeptNo = ’D01’

becomes

σA.ActNo=10∧P.DeptNo=′D01′(A 1 P)

• This can be transformed to

σA.ActNo=10(σP.DeptNo=′D01′(A 1 P))

Conjunctive Selection Conditions (cont’d)

• The selection pushdown may now be performed:

σA.ActNo=10(A 1 σDeptNo=′D01′(P))

and again to produce

(σActNo=10(A)) 1 (σDeptNo=′D01′(P))

Early Projection

• Projection will not reduce the number of tuples in a
relation, but it can reduce the size of each tuple by
eliminating unnecessary attributes.

• However, this:

πLastName(σMgrNo=′00020′(E 1RespEmp=EmpNo (D 1 P)))

cannot simply be transformed into this:

σMgrNo=′00020′((πLastName(E)) 1RespEmp=EmpNo (D 1 P))

• In general, projection may be used to eliminate any
attributes that will not be used in the result, and that
will not be used in subsequent joins or selections.

Reordering Joins

• Joins (and cross products) are associative

(R1 1 R2) 1 R3 ≡ R1 1 (R2 1 R3)

• and commutative

R1 1 R2 ≡ R2 1 R1

Join Order
• The join order may have a significant impact on the

cost of a plan. Consider the modified plan:

πLastName(E 1RespEmp=EmpNo ((σMgrNo=′00020′(D)) 1 P))

• The joins can be computed, pair-wise, like this:

E 1RespEmp=EmpNo (D 1 P)

• or like this:

(E ×D) 1RespEmp=EmpNo P

• or like this:

(E 1RespEmp=EmpNo P) 1 D

Cost Models

• An optimizer estimates costs for plans so that it can
choose the least expensive plan from a set of
alternatives.

• Inputs to the cost model include:
• the query
• database statistics
• resource availability
• system configuation parameters

• There are many possible cost models. General
models attempt to estimate the expected resource
consumption of a plan. System resources may
include:

• disk bandwidth
• processing time
• network bandwidth

A Simple Cost Model

• Suppose that the cost of an operation is the number
of disk block transfers it is expected to require:

• The number of disk block retrievals depends on the
number of input tuples and on the tuple blocking
factor (tuples per block).

• For a relation R:
• |R| will represent the number of tuples in R
• b(R) will represent the blocking factor for R
• |R|/b(R) is the number of blocks used to store R

B-Tree Cost Example

• Suppose that a clustered, dense B-tree index is
defined on attribute A of relation R, with the following
properties:

• there are 4K (4096) bytes per block
• each tuple of R occupies 256 bytes
• there are 1,000,000 tuples in R
• leaf blocks contain tuples, and are 65% full, on

average
• each internal index block holds up to 100 pointers
• internal index blocks are 100% full

• If a index scan operator in a query needs to retrieve
from R all of the tuples for which A = c (for some
constant c), how many disk block retrievals will it
require?

B-Tree Cost Example (cont’d)
• Each leaf block holds at most (4096/256) ∗ 0.65 ≈ 10

tuples.
• A total of 1000000/10 = 100000 leaf blocks are

needed to store the tuples of R.
• Since each internal index block holds 100 pointers,

there will be 100000/100 = 1000 internal index blocks
in the lowest internal level of the B-tree.

• There will be 1000/100 = 10 internal index blocks in the
next level of the B-tree.

• Counting the root, there are 3 levels of internal index
nodes in the b-tree.

• Retrieving the matching tuples will require three block
retrievals (one for each level of the index), plus as
many retrievals as there are leaf blocks containing
tuples with A=c.

Costs of Alternative Plans

Select ProjName, PrStaff
From Project
Where DeptNo = ’D01’ And RespEmp = ’00100’
And PrStaff > 4

• Indices:
• clustered B-tree index DeptInd on DeptNo
• non-clustered B-tree index EmpInd on RespEmp

• Assume:
• |Project| = 10000
• b(Project) = 50
• 500 different Employees
• 100 different Departments
• index leaves contain tuple IDs (100 each), index depth

is 2

Selection Strategy: Use DeptInd

• Assuming uniform distribution of tuples over the
departments, there will be about |Project|/100 = 100
tuples with DeptNo = ’D01’

• A traversal of DeptInd costs 2. An additional index
leaf may need to be retrieved to find all of the
matching tuple IDs. Retrieval of the 100 matching
tuples adds a cost of ≈ 100/b(Project) = 2. leaf blocks
(since the relation is clustered on DeptNo), for a total
cost of about 4 or 5 block retrievals.

Selection Strategy: Use EmpInd

• Assuming uniform distribution of tuples over
employees, there will be about |Project|/500 = 20
tuples for each employee.

• A traversal of EmpInd has a cost of 2. Since there are
only 20 matching tuples, no additional index leaf
blocks are likely to be required. Since this is not a
clustered index, we will make the pessimistic
assumption that each matching record is in a
separate data block, i.e., 20 blocks will need to be
read. The total cost is approximately 22 block
retrievals.

Selection Strategy: Scan the Relation

• The relation occupies 10,000/50 = 200 blocks, so 200
blocks will be retrieved.

Database Statistics

• Assume that R is a relation and that R.a is an attribute
of R. Commonly maintained statistics include:

• |R|: the cardinality of R, i.e., the number of tuples in R
• min(R.a): the minimum value for R.a
• max(R.a): the maximum value for R.a
• distinct(R.a): the number of distinct values of R.a

• As the database is modified, statistics need to be
updated.

• Updates may be incremental, on each update, or
may be periodic and controlled by the DBA.

Database Statistics in DB2

localhost[114] db2 "runstats on table kmsalem.employee
with distribution"

DB20000I The RUNSTATS command completed successfully.

localhost[116] db2 "select card from sysstat.tables
where tabname = ’EMPLOYEE’"

CARD

32

1 record(s) selected.

Database Statistics in DB2 (cont’d)

db2 "select colname,colcard,high2key,low2key
from sysstat.columns where tabname = ’EMPLOYEE’"

BIRTHDATE 30 ’1955-04-12’ ’1926-05-17’
BONUS 8 +0000900.00 +0000400.00
COMM 32 +0003720.00 +0001272.00
EDLEVEL 8 19 14
EMPNO 32 ’000330’ ’000020’
FIRSTNME 30 ’WILLIAM’ ’CHRISTINE’
HIREDATE 31 ’1980-06-19’ ’1949-08-17’
JOB 8 ’PRES ’ ’CLERK ’
LASTNAME 31 ’WALKER’ ’BROWN’
MIDINIT 20 ’W’ ’A’
PHONENO 32 ’9001’ ’0942’
SALARY 32 +0046500.00 +0015900.00
SEX 2 ’M’ ’F’
WORKDEPT 8 ’E11’ ’B01’

Database Statistics in DB2 (cont’d)

db2 "select seqno,colvalue,valcount from
sysstat.coldist where tabname = ’EMPLOYEE’
and colname = ’SALARY’"

SEQNO COLVALUE VALCOUNT
1 +0015340.00 1
2 +0015900.00 2
3 +0017750.00 4
4 +0018270.00 5
5 +0019950.00 7
6 +0021340.00 9
7 +0022180.00 10
...
16 +0036170.00 26
17 +0038250.00 27
18 +0040175.00 29
19 +0046500.00 31
20 +0052750.00 32

Selectivity and Join Size Estimation
• Because

• the cost of an operation depends on the size of its
input, and

• the output of one operation often becomes the input
of another, and

database systems need some way to estimate the
size of the result of an operation, such as a selection
or a join.

• These estimates are often made using (potentially
unrealistic) assumptions and/or about attribute value
statistics. In particular:
Uniformity : all possible values of attribute A are

equally likely to occur in a relation
Independence : the likelihood that a tuple will have

A1 = a1 does not depend on what value
it has for attribute A2.

Selectivity Estimation

• The selectivity of a selection σcondition(R) is defined as:

sel(σcondition(R)) =
|σcondition(R)|

|R|

• If the DBMS has no other information, it may use
selectivity estimators based on the available statistics.
For example:

• sel(σa=c(R)) ≈ 1
distinct(R.a)

• sel(σa≤c(R)) ≈ c−min(R.a)
max(R.a)−min(R.a)

• sel(σa≥c(R)) ≈ max(R.a)−c
max(R.a)−min(R.a)

• sel(σcond1∧cond2(R)) ≈ sel(σcond1(R))sel(σcond2(R))

Join Size Estimation

• The number of tuples in the result of a join depends on
the number of values that match in the join attributes
of the two tables. Some examples:

• Consider P 1(RespEmp=EmpNo) E). Since EmpNo is the key
of E, the join size may be estimated as |P|. Many joins
are foreign key joins, like this one.

• Consider R1 1R1.a=R2.b R2 that is not a foreign key join.
Assuming that distinct(R1.a) ≤ distinct(R2.b), that each
distinct value of R1.a matches a value in R2.b, and that
tuples in R2 are uniformly distributed over the distinct
values of R2.b, the join size might be estimated as

|R1 1R1.a=R2.b R2| ≈ |R1|
|R2|

distinct(R2.b)

Costing Info in DB2

Parallelism: None
CPU Speed: 2.664809e-06
Comm Speed: 0
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Average Applications: 1

Costing Info in DB2 (cont’d)

0.639622
SORT
66.5245
2.63962
|

0.639622 <-- estimated rows
NLJOIN
66.5166 <-- cumulative cost
2.63962 <-- cumulative I/Os

/-------+-------\
3.2 0.199882

TBSCAN FETCH
50.3429 5.11925

2 0.199882
| /----+---\

Cost-Based Optimization

• find a plan with low cost
• number of possible plans grows quickly with the

number of relations involved in the query
• n! left-deep join orders over for n relation query

• dynamic programming approach (from System R):
• bottom-up determination of join order
• prune high-cost alternatives
• retain alternatives with “interesting” features

Dynamic Programming Optimization Example

Select LastName, EmpTime, Projname
From Employee E, Emp Act A, Project P
Where E.Empno = A.Empno And A.ProjNo = P.ProjNo
And A.EmStDate like ’82%’ And A.EmpTime >= 0.5

Available Access Methods:
EI1: clustered Btree on E.Empno relevant
EI2: table scan of E relevant
PI1: clustered Btree on P.Projno relevant
PI2: table scan of P relevant
AI1: clustered Btree on A.(Actno,Projno) not relevant
AI2: unclustered Btree on A.EmStDate relevant
AI3: unclustered Btree on A.Empno relevant
AI4: table scan of A relevant

Dynamic Programming Optimization Example
(cont’d)

• first iteration: choose the best plan(s) for generating
the required tuples from each single relation

• σEmStDate like ′82%′∧EmpTime≥0.5(A)
• E
• P

• to choose plans for generating tuples from a relation,
consider the available access methods for that
relation

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for σEmStDate like ′82%′∧EmpTime≥0.5(A)

1. Generate possible plans:
A1: table scan (AI4), then

σEmStDate like ′82%′∧EmpTime≥0.5
A2: index scan (AI2) tuples with EmStDate like

’82%’, then σEmpTime≥0.5
A3: index scan (AI3) all tuples, then

σEmStDate like ′82%′∧EmpTime≥0.5
2. Estimate costs of possible plans:

• suppose that cost(A2) < cost(A1) < cost(A3).
3. Prune plans:

A1: PRUNE!
A2: keep (lowest cost)
A3: keep (more costly than A2, but generates

tuples in an interesting order - Empno
order)

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for E

1. Generate possible plans:
E1: table scan (EI2)
E2: index scan (EI1)

2. Estimate cost of possible plans:
• suppose that cost(E1) < cost(E2).

3. Prune plans:
E1: keep (lowest cost)
E2: keep (more costly than E1, but generates

tuples in Empno order)

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for P

1. Generate possible plans:
P1: table scan (PI2)
P2: index scan (PI1)

2. Estimate cost of possible plans:
• suppose that cost(P1) < cost(P2).

3. Prune plans:
P1: keep (lowest cost)
P2: keep (more costly than P1, but generates

tuples in Projno order)

Dynamic Programming Optimization Example
(cont’d)

• second iteration: choose the best plan(s) for
generating the required tuples from each pair of
relations

• σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 E
• σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 P
• E 1 P

• to build plans for generating tuples from n relations:
• choose a join type
• choose an unpruned plan for n− 1 relations as the

outer input to the join
• choose an access method for the remaining relation

as the inner input to the join

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 E

1. Generate possible plans (not all shown)
AE1: nested loop join A2 and EI2
AE2: index nested loop join A2 and EI1
AE3: merge join sort(A2) and EI1 (Empno order)
AE4: nested loop join A3 and EI1 (Empno order)
AE5: merge join A3 and EI1 (Empno order)
EA1: nested loop join E1 and AI2
EA2: merge join E2 and sort(AI4) (Empno order)
EA3: index nested loop join E2 and AI3 (Empno

order)
2. Estimate costs of possible plans and prune:

• suppose that cost(EA2) is lowest among plans
generating Empno order and cost(AE1) is the
cheapest overall. Prune all but EA2 and AE1.

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 P

1. Generate possible plans (not all shown)
AP1: nested loop join A3 and sort(PI2) (Empno

order)
AP2: merge join sort(A2) and PI1 (Projno order)
AP3: index nested loop join A3 and PI1 (Empno

order)
AP4: index nested loop join A2 and PI1
PA1: index nested loop join P2 and AI3 (Projno

order)
2. Estimate costs of possible plans and prune:

• suppose that AP2 is cheapest overall, and that
cost(AP3) < cost(AP1)

• keep only AP2 (cheapest) and AP3 (more expensive,
but Empno order is interesting)

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for P 1 E

1. Generate possible plans (not all shown)
PE1: nested loop join of P2 and EI2 (Projno

order)
EP1: nested loop join of E2 and PI2 (Empno

order)
2. Estimate costs of possible plans and prune:

• suppose that PE2 is cheapest overall, and EP1 is the
cheapest plan producing Empno order

• keep PE2 (cheapest) and PE1 (interesting order)

Dynamic Programming Optimization Example
(cont’d)

• third iteration: choose the best plan(s) for generating
the required tuples from all three relations

• σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 E 1 P
• consider

• the best plans for σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 E
combined with an access method for P

• the best plans for σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 P
combined with an access method for E

• the best plans for E 1 P, combined with an access
method for A

Dynamic Programming Optimization Example
(cont’d)

Choose plan(s) for σEmStDate like ′82%′∧EmpTime≥0.5(A) 1 E 1 P
1. Generate possible plans (not all shown)

AEP1: index nested loop join AE1 and PI1
AEP2: nested loop join AE1 and PI2
APE1: index nested loop join AP2 and EI1
APE2: merge join AP3 and EI1 (Empno order)
PEA1: index nested loop join PE1 and AI3 (Projno

order)
PEA2: merge join PE2 and AI3 (Empno order)

2. Estimate costs of possible plans and prune:
• suppose that AEP1 is cheapest
• since there are no more relations to be joined and

there are no GROUP BY or ORDER BY clauses in the
query, there is no need to further preserve interesting
orders.

• prune all plans except the winner: AEP1

Effects of Pruning

A E P

AEP

AP

AE
PE

Effects of Pruning (cont’d)

A E P

AEP

AP

AE
PE

PRUNE

Effects of Pruning (cont’d)

A E P

AEP

AP

AE
PE

PRUNE

Effects of Pruning (cont’d)

A E P

AEP

AP

AE
PE

PRUNE

Effects of Pruning (cont’d)

A E P

AEP

AP

AE
PE

PRUNE

