Introduction to Transactions

David Toman

School of Computer Science
University of Waterloo

Database Implementation CS448

David Toman (University of Waterloo) Transaction Execution 1/12



Basics of Transaction Processing

Query (and update) processing converts requests for sets of tuples to
requests for reads and writes of physical objects in the database. J

database objects (depending on granularity) can be
e individual attributes
e records

e physical pages

o files (only for concurrency control purposes)

David Toman (University of Waterloo)

Transaction Execution 2/12



Basics of Transaction Processing

Query (and update) processing converts requests for sets of tuples to
requests for reads and writes of physical objects in the database. J

database objects (depending on granularity) can be
e individual attributes
e records
e physical pages
o files (only for concurrency control purposes)

Goals

= correct and concurrent execution of queries and updates
= guarantee that acknowledged updates are persistent

David Toman (University of Waterloo) Transaction Execution 2/12



ACID Requirements

Transactions are said to have the ACID properties:

Atomicity: all-or-nothing execution
Consistency: execution preserves database integrity
Isolation: transactions execute independently (as if they were
executed in the system alone)
Durability: updates made by a committed transaction will not be
destroyed by subsequent failures.

David Toman (University of Waterloo) Transaction Execution

3/12



ACID Requirements

Transactions are said to have the ACID properties:

Atomicity: all-or-nothing execution
Consistency: execution preserves database integrity

Isolation: transactions execute independently (as if they were
executed in the system alone)

Durability: updates made by a committed transaction will not be
destroyed by subsequent failures.

Implementation of transactions in a DBMS comes in two parts:
e Concurrency Control: committed transactions do not interfere

* Recovery Management: committed transactions are durable,
aborted transactions have no effect on the database

David Toman (University of Waterloo) Transaction Execution 3/12



Concurrency Control: assumptions

© we fix a database: a set of objects read/written by transactions:

= r;[z]: transaction T; reads object z

= w;[z]: transaction T; writes (modifies) object =
® a transaction T; is a sequence of operations

Ti = rif@], rilze], wilm], . . ., rilza), wilze], ¢
c; is the commit request of T;.

© for a set of transactions T4, ..., Tx we want to produce a

schedule S of operations such that

= every operation o, € T; appears also in S
= T;’s operations in S are ordered the same way as in T}

David Toman (University of Waterloo) Transaction Execution 4/12



Concurrency Control: assumptions

© we fix a database: a set of objects read/written by transactions:

= r;[z]: transaction T; reads object z

= w;[z]: transaction T; writes (modifies) object =
® a transaction T; is a sequence of operations

Ti = rif@], rilze], wilm], . . ., rilza), wilze], ¢
c; is the commit request of T;.

© for a set of transactions T4, ..., Tx we want to produce a

schedule S of operations such that

= every operation o, € T; appears also in S
= T;’s operations in S are ordered the same way as in T}

Goal:
produce a correct schedule with maximal parallelism J

David Toman (University of Waterloo) Transaction Execution 4/12



Transactions and Schedules

If T; and T} are concurrent transactions, then it is always correct to
schedule the operations in such a way that:
e T; will appear to precede T; meaning that T} will “see” all updates
made by T3, and T; will not see any updates made by T3, or
e T; will appear to follow T, meaning that T; will see T;’s updates
and T; will not see T;’s.

Idea how to define Correctness:
it must appear as if the transactions have been executed sequentially

(in some serial order).

David Toman (University of Waterloo) Transaction Execution 5/12



Serializable Schedules

Definition
An execution of is said to be serializable if it is equivalent to a serial
execution of the same transactions.

David Toman (University of Waterloo) Transaction Execution 6/12



Serializable Schedules

Definition
An execution of is said to be serializable if it is equivalent to a serial
execution of the same transactions.

Example:
¢ An interleaved execution of two transactions:
Sa = wi[z] ro[z] way] m2[y]
¢ An equivalent serial execution (T4 , T5):
Sy = wi[z] wily] r2[z] 72[y]
¢ An interleaved execution with no equivalent serial execution:

Se = wiz] relz] r2[y] wa[y]

6/12

David Toman (University of Waterloo) Transaction Execution



Conflict Equivalence

How do we determine if two schedules are equivalent? J

= cannot be based on any particular database instance

David Toman (University of Waterloo) Transaction Execution 7/12



Conflict Equivalence

How do we determine if two schedules are equivalent? J

= cannot be based on any particular database instance

Conflict Equivalence:
o two operations conflict if they

(1) belong to different transactions
(2) access the same data item z
(3) at least one of them is a write operation w|z].

e we require that in two conflict-equivalent histories all conflicting
operations are ordered the same way.

e yields conflict-serializable schedules
= conflict-equivalent to a serial schedule

David Toman (University of Waterloo) Transaction Execution 7/12



Conflict Equivalence

How do we determine if two schedules are equivalent? J

= cannot be based on any particular database instance

Conflict Equivalence:
o two operations conflict if they
(1) belong to different transactions
(2) access the same data item z
(3) at least one of them is a write operation w|z].
e we require that in two conflict-equivalent histories all conflicting
operations are ordered the same way.
e yields conflict-serializable schedules
= conflict-equivalent to a serial schedule

View Equivalence:
allows more schedules, but it is harder (NP-hard) to compute

David Toman (University of Waterloo) Transaction Execution 7/12



Serialization Graph

How do we test if a schedule is conflict equivalent to a serial schedule?

¢ A serialization graph SG(S) for a schedule S is a directed graph
with nodes labeled by transactions such that

T; — T; € SG(S) iff o;[z] precedes o;[z] in S

where o;[z] and o;[z] are conflicting operations.

David Toman (University of Waterloo) Transaction Execution 8/12



Serialization Graph

How do we test if a schedule is conflict equivalent to a serial schedule?

¢ A serialization graph SG(S) for a schedule S is a directed graph
with nodes labeled by transactions such that

T; — T; € SG(S) iff o;[z] precedes o;[z] in S

where o;[z] and o;[z] are conflicting operations.

Theorem:
A schedule S is serializable if and only if SG(S) is acyclic graph. J

David Toman (University of Waterloo) Transaction Execution 8/12



Other Properties of Schedules

Serializability guarantees correctness. However, we'd like to avoid
other unpleasant situations.

David Toman (University of Waterloo) Transaction Execution 9/12



Other Properties of Schedules

Serializability guarantees correctness. However, we’'d like to avoid
other unpleasant situations. J

Recoverable Schedules: (RC)
transaction T; reads a value T; has written, T succeeds
to commit, and T tries to abort (in this order)

= to abort T, we need to undo effects of
a committed transaction T4.

= commits only in order of the read-from dependency

David Toman (University of Waterloo) Transaction Execution 9/12



Other Properties of Schedules

Serializability guarantees correctness. However, we’'d like to avoid
other unpleasant situations. J

Recoverable Schedules: (RC)

transaction T; reads a value T; has written, T succeeds
to commit, and T tries to abort (in this order)

= to abort T we need to undo effects of
a committed transaction T1;.
= commits only in order of the read-from dependency
Cascadeless Schedules (ACA):
if T; above didn’t commit we can abort it:
may lead to cascading aborts of many transactions
= no reading of uncommitted data

David Toman (University of Waterloo) Transaction Execution

9/12



How to Get a Serializable Schedule?

So how do we build schedulers that produce serializable and
cascadeless schedules? J

The scheduler receives requests from the query processor(s). For
each operation it chooses one of the following actions:

o execute it (by sending to a lower module),

e delay it (by inserting in some queue), or

e reject it (thereby causing abort of the transaction)
e ignore it (as it has no effect)

Two main kinds of schedulers:

= conservative (favors delaying operations)
= aggressive (favors rejecting operations)

David Toman (University of Waterloo) Transaction Execution 10/12



Summary

ACID properties of transactions guarantee correctness of concurrent
access to the database and of data storage. J

e consistency and isolation based on serializability
= leads to definition of correct schedulers
= responsibility of the transaction manager

¢ durability and atomicity

= responsibility of the recovery manager
= synchronous writing is too inefficient
replaced by synchronous writes to a LOG and WAL

David Toman (University of Waterloo) Transaction Execution 11/12



Summary

e many ways to implement a correct scheduler:

= conservative: locking (2PL)
with deadlock prevention
with deadlock detection
= aggressive: timestamps

= schedulers that abort transactions rely on the recovery
manager

¢ additional issues:
© inserts and deletes?
® granularity of concurrency control?
® concurrency and data structures?
@ multiple versions of data items?

David Toman (University of Waterloo) Transaction Execution 12/12



