
Introduction to Transactions

David Toman

School of Computer Science
University of Waterloo

Database Implementation CS448

David Toman (University of Waterloo) Transaction Execution 1 / 12



Basics of Transaction Processing

Query (and update) processing converts requests for sets of tuples to
requests for reads and writes of physical objects in the database.

database objects (depending on granularity) can be
• individual attributes
• records
• physical pages
• files (only for concurrency control purposes)

Goals
) correct and concurrent execution of queries and updates
) guarantee that acknowledged updates are persistent

David Toman (University of Waterloo) Transaction Execution 2 / 12



Basics of Transaction Processing

Query (and update) processing converts requests for sets of tuples to
requests for reads and writes of physical objects in the database.

database objects (depending on granularity) can be
• individual attributes
• records
• physical pages
• files (only for concurrency control purposes)

Goals
) correct and concurrent execution of queries and updates
) guarantee that acknowledged updates are persistent

David Toman (University of Waterloo) Transaction Execution 2 / 12



ACID Requirements

Transactions are said to have the ACID properties:

Atomicity: all-or-nothing execution
Consistency: execution preserves database integrity

Isolation: transactions execute independently (as if they were
executed in the system alone)

Durability: updates made by a committed transaction will not be
destroyed by subsequent failures.

Implementation of transactions in a DBMS comes in two parts:
• Concurrency Control: committed transactions do not interfere
• Recovery Management: committed transactions are durable,

aborted transactions have no effect on the database

David Toman (University of Waterloo) Transaction Execution 3 / 12



ACID Requirements

Transactions are said to have the ACID properties:

Atomicity: all-or-nothing execution
Consistency: execution preserves database integrity

Isolation: transactions execute independently (as if they were
executed in the system alone)

Durability: updates made by a committed transaction will not be
destroyed by subsequent failures.

Implementation of transactions in a DBMS comes in two parts:
• Concurrency Control: committed transactions do not interfere
• Recovery Management: committed transactions are durable,

aborted transactions have no effect on the database

David Toman (University of Waterloo) Transaction Execution 3 / 12



Concurrency Control: assumptions

1 we fix a database: a set of objects read/written by transactions:
) ri [x ]: transaction Ti reads object x
) wi [x ]: transaction Ti writes (modifies) object x

2 a transaction Ti is a sequence of operations
Ti = ri [x1]; ri [x2]; wi [x1]; : : : ; ri [x4]; wi [x2]; ci

ci is the commit request of Ti .

3 for a set of transactions T1; : : : ; Tk we want to produce a
schedule S of operations such that
) every operation oi 2 Ti appears also in S
) Ti ’s operations in S are ordered the same way as in Ti

Goal:
produce a correct schedule with maximal parallelism

David Toman (University of Waterloo) Transaction Execution 4 / 12



Concurrency Control: assumptions

1 we fix a database: a set of objects read/written by transactions:
) ri [x ]: transaction Ti reads object x
) wi [x ]: transaction Ti writes (modifies) object x

2 a transaction Ti is a sequence of operations
Ti = ri [x1]; ri [x2]; wi [x1]; : : : ; ri [x4]; wi [x2]; ci

ci is the commit request of Ti .

3 for a set of transactions T1; : : : ; Tk we want to produce a
schedule S of operations such that
) every operation oi 2 Ti appears also in S
) Ti ’s operations in S are ordered the same way as in Ti

Goal:
produce a correct schedule with maximal parallelism

David Toman (University of Waterloo) Transaction Execution 4 / 12



Transactions and Schedules

If Ti and Tj are concurrent transactions, then it is always correct to
schedule the operations in such a way that:

• Ti will appear to precede Tj meaning that Tj will “see” all updates
made by Ti , and Ti will not see any updates made by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj ’s updates
and Tj will not see Ti ’s.

Idea how to define Correctness:
it must appear as if the transactions have been executed sequentially
(in some serial order).

David Toman (University of Waterloo) Transaction Execution 5 / 12



Serializable Schedules

Definition
An execution of is said to be serializable if it is equivalent to a serial
execution of the same transactions.

Example:

• An interleaved execution of two transactions:
Sa = w1[x ] r2[x ] w1[y ] r2[y ]

• An equivalent serial execution (T1 , T2):
Sb = w1[x ] w1[y ] r2[x ] r2[y ]

• An interleaved execution with no equivalent serial execution:
Sc = w1[x ] r2[x ] r2[y ] w1[y ]

David Toman (University of Waterloo) Transaction Execution 6 / 12



Serializable Schedules

Definition
An execution of is said to be serializable if it is equivalent to a serial
execution of the same transactions.

Example:

• An interleaved execution of two transactions:
Sa = w1[x ] r2[x ] w1[y ] r2[y ]

• An equivalent serial execution (T1 , T2):
Sb = w1[x ] w1[y ] r2[x ] r2[y ]

• An interleaved execution with no equivalent serial execution:
Sc = w1[x ] r2[x ] r2[y ] w1[y ]

David Toman (University of Waterloo) Transaction Execution 6 / 12



Conflict Equivalence

How do we determine if two schedules are equivalent?

) cannot be based on any particular database instance

Conflict Equivalence:
• two operations conflict if they

(1) belong to different transactions
(2) access the same data item x
(3) at least one of them is a write operation w [x ].

• we require that in two conflict-equivalent histories all conflicting
operations are ordered the same way.

• yields conflict-serializable schedules
) conflict-equivalent to a serial schedule

View Equivalence:
allows more schedules, but it is harder (NP-hard) to compute

David Toman (University of Waterloo) Transaction Execution 7 / 12



Conflict Equivalence

How do we determine if two schedules are equivalent?

) cannot be based on any particular database instance

Conflict Equivalence:
• two operations conflict if they

(1) belong to different transactions
(2) access the same data item x
(3) at least one of them is a write operation w [x ].

• we require that in two conflict-equivalent histories all conflicting
operations are ordered the same way.

• yields conflict-serializable schedules
) conflict-equivalent to a serial schedule

View Equivalence:
allows more schedules, but it is harder (NP-hard) to compute

David Toman (University of Waterloo) Transaction Execution 7 / 12



Conflict Equivalence

How do we determine if two schedules are equivalent?

) cannot be based on any particular database instance

Conflict Equivalence:
• two operations conflict if they

(1) belong to different transactions
(2) access the same data item x
(3) at least one of them is a write operation w [x ].

• we require that in two conflict-equivalent histories all conflicting
operations are ordered the same way.

• yields conflict-serializable schedules
) conflict-equivalent to a serial schedule

View Equivalence:
allows more schedules, but it is harder (NP-hard) to compute

David Toman (University of Waterloo) Transaction Execution 7 / 12



Serialization Graph

How do we test if a schedule is conflict equivalent to a serial schedule?

• A serialization graph SG(S) for a schedule S is a directed graph
with nodes labeled by transactions such that

Ti ! Tj 2 SG(S) iff oi [x ] precedes oj [x ] in S

where oi [x ] and oj [x ] are conflicting operations.

Theorem:
A schedule S is serializable if and only if SG(S) is acyclic graph.

David Toman (University of Waterloo) Transaction Execution 8 / 12



Serialization Graph

How do we test if a schedule is conflict equivalent to a serial schedule?

• A serialization graph SG(S) for a schedule S is a directed graph
with nodes labeled by transactions such that

Ti ! Tj 2 SG(S) iff oi [x ] precedes oj [x ] in S

where oi [x ] and oj [x ] are conflicting operations.

Theorem:
A schedule S is serializable if and only if SG(S) is acyclic graph.

David Toman (University of Waterloo) Transaction Execution 8 / 12



Other Properties of Schedules

Serializability guarantees correctness. However, we’d like to avoid
other unpleasant situations.

Recoverable Schedules: (RC)
transaction Tj reads a value Ti has written, Tj succeeds
to commit, and Ti tries to abort (in this order)
) to abort T2 we need to undo effects of

a committed transaction T1.

) commits only in order of the read-from dependency

Cascadeless Schedules (ACA):
if Tj above didn’t commit we can abort it:

may lead to cascading aborts of many transactions

) no reading of uncommitted data

David Toman (University of Waterloo) Transaction Execution 9 / 12



Other Properties of Schedules

Serializability guarantees correctness. However, we’d like to avoid
other unpleasant situations.

Recoverable Schedules: (RC)
transaction Tj reads a value Ti has written, Tj succeeds
to commit, and Ti tries to abort (in this order)
) to abort T2 we need to undo effects of

a committed transaction T1.

) commits only in order of the read-from dependency

Cascadeless Schedules (ACA):
if Tj above didn’t commit we can abort it:

may lead to cascading aborts of many transactions

) no reading of uncommitted data

David Toman (University of Waterloo) Transaction Execution 9 / 12



Other Properties of Schedules

Serializability guarantees correctness. However, we’d like to avoid
other unpleasant situations.

Recoverable Schedules: (RC)
transaction Tj reads a value Ti has written, Tj succeeds
to commit, and Ti tries to abort (in this order)
) to abort T2 we need to undo effects of

a committed transaction T1.

) commits only in order of the read-from dependency

Cascadeless Schedules (ACA):
if Tj above didn’t commit we can abort it:

may lead to cascading aborts of many transactions

) no reading of uncommitted data

David Toman (University of Waterloo) Transaction Execution 9 / 12



How to Get a Serializable Schedule?

So how do we build schedulers that produce serializable and
cascadeless schedules?

The scheduler receives requests from the query processor(s). For
each operation it chooses one of the following actions:

• execute it (by sending to a lower module),
• delay it (by inserting in some queue), or
• reject it (thereby causing abort of the transaction)
• ignore it (as it has no effect)

Two main kinds of schedulers:
) conservative (favors delaying operations)
) aggressive (favors rejecting operations)

David Toman (University of Waterloo) Transaction Execution 10 / 12



Summary

ACID properties of transactions guarantee correctness of concurrent
access to the database and of data storage.

• consistency and isolation based on serializability
) leads to definition of correct schedulers
) responsibility of the transaction manager

• durability and atomicity

) responsibility of the recovery manager
) synchronous writing is too inefficient

replaced by synchronous writes to a LOG and WAL

David Toman (University of Waterloo) Transaction Execution 11 / 12



Summary

• many ways to implement a correct scheduler:

) conservative: locking (2PL)
with deadlock prevention
with deadlock detection

) aggressive: timestamps

) schedulers that abort transactions rely on the recovery
manager

• additional issues:
1 inserts and deletes?
2 granularity of concurrency control?
3 concurrency and data structures?
4 multiple versions of data items?

David Toman (University of Waterloo) Transaction Execution 12 / 12


