CS448/648 Database Systems Implementation

Tutorial 1: Internals of PostgreSQL

Outline

ntroduction to PostgreSQL

2. PostgreSQL Architecture
3. PostgreSQL Components

Parser

Query Rewriter
Optimizer
Executor

4. Symmetric Hash Join

lind
IT1LI

IJII
l U

+1An +
L L

Vo DA
1VUI 1 rJ

OQucC O 5 SQL
 PostgreSQL is an open-source, object-

relational database system.

e PostgreSQL was first developed at University
of California, Berkeley under the name
POSTGRES.

e Throughout this course, we will use version
8.1.4 as a code-base to implement new
features on top of it.

PostgreSQL Architecture

Main

A 4

Postmaster

-—_
=~

_ A 4 . 4
Postgres [Postgres]

Client Process]
(psql / pglib) |

Types of Clients

* psql
— Psql is an interactive client that allows the user to submit SQL
gueries.
e libpq

— Libpq is the C application programmer's interface (API) to
PostgreSQL. libpq is a set of library functions that allow client
programs to pass queries to the PostgreSQL backend server.

e Server Programming Interface (SPI)

— SPI gives writers of user-defined C functions the ability to run
SQL commands inside their functions. SPI is a set of interface
functions to simplify access to the parser, planner, optimizer,
and executor. SPIl also does some memory management.

PotgreSQL Backend

Client
Interface Lib
SQL Queries Query Results
Postgres Server
@ _ @
Parser Look up Ze@ff’” Executor
Object Store
Definitions>patabas e,é-tfser Data
Parse|Trees Look up -~ Tables Plan Trees
Rule/View Look up
¥ _Définitions Statisties i
2) 3
Rewriter Rewritten Parse Trees Planner

Reference: Tom Lane, A Tour of PostgreSQL Internals

nl VaVaW) n"\lf'l‘f\lf
Luery rarsei
SQL query is tokenized and parsed according

to SQL language standard.

It parses and analyzes the string input and
gives out a Query structure (Query Tree) for
the executor.

Syntax-errors are caught at this stage.
Source code located in the directory
src/backend/parser

Example

Input:

SELECT * FROM tabl, tab2 WHERE tabl.a

Output:

SELECT Query

Join Tree —

Qualification

.lll.
/

/

lr___ﬁ-_.
int4 =1

',
| |
.Il

L1
-.
\'\-:w.

7 tab2.f

-,

‘tabla
. S

A

Reference: Tom Lane, A Tour of PostgreSQL Internals

Target List —

tab2.f

A tabla int4)
> tab1.b text)

» tab1.c float8)

> tab2.d text)

> tab2.e text)

_ (tab2f int4

) RE& §
Cross Join

|
i

!

" tabt <7

\,

"y

\\.\ I.—"- -\I
= tab2

Query Rewriter

Also called the Rule System.

It modifies the Query structure based on a set of rules before
passing it to the optimizer.

Rules can be user-defined or automatically created for views.
Rules types are ON SELECT, ON UPDATE/INSERT/DELETE

Example :

SELECT * FROM Tabl, View?2
is flattened to

SELECT * FROM Tabl, (SELECT * FROM Tab2,Tab3) AS View?2 ...

Query Rewriter: Example

« Say we want to trace changes to the sl_avail column in the
shoelace_data relation in a log table:

CREATE RULE log_shoelace
AS ON UPDATE TO shoelace_data
WHERE NEW.sl_avail <> OLD.sl_avalil
DO INSERT INTO shoelace_log
VALUES (NEW.sl_name,
NEW.sl_avall,
current_user,
current_timestamp);

PostgreSQL Optimizer

e PostgreSQL uses bottom-up optimization (dynamic
programming).

e Optimizer accepts a Query structure and produces a
plan with the least estimated cost.

Path Structure

Possible physical plans to answer the query are
stored in a structure named Path .

A Path is a hierarchical structure. Each node

represents a query operator.

A Path specifies the access methods, the join order
and the join algorithms used at each node.

Example path:

BaseRel A

BaseRel B

BaseRel C

12

ODiierv Onerators
\« [] , vrl\—l WA OCW 1 I

w1

 Unary operators : accepts one input relation
— Sequential Scan/ Index Scan
— Sort
— Unique
— Aggregate
— Materialize
e Binary operators : accepts two input relations
— Nested Loop Join
— Hash Join
— Merge Join

Constructing Paths

Paths are constructed in a bottom-up style.
Two main types of relations:

— Base Rel : could be primitive tables, or subqueries that are
planned via a separate recursive invocation of the planner

— Join Rel : is a combination of base rels

Joinrels are constructed incrementally. Larger joinrels are
constructed by combining smaller baserels and joinrels.

Example : constructing A< B<t C < D

@ A B C D
@ A X B BxC CxD
@ AXBXC BxCxXD
AXBXCxD

Entry Point and Important Files

Optimizer component is included in the directory :
src/backend/optimizer

The optimizer entry point is in the file

src/backend/optimizer/plan/planner.c

Path construction and cost estimation is included in
the directory

src/backend/optimizer/path

A README file is included in the optimizer
directory for more details.

You can use the Explain command to print the
selected plan, along with estimated and actual
statistics (e.g. cardinality, execution time)

Plan Executor

o After finding the path with the least cost, a
Plan is constructed from the found path.

 There is a one-to-one mapping between a
Path and a Plan. Different information are kept
in each structure that suits the query
processing stage (optimization / execution)

e Similar to a the Path structure, a Plan is a
hierarchical structure of query operators.

Query Operators

 Operators can be classified to two categories:
— Blocking Operators : sort, aggregate
— Non-blocking operators (pipelined) : Index Scan,
Merge join, Nested-Loop Join
* Pipelining tuples through operators allows fast
reporting of results; user does not have to

wait till all of the input tuples are processed
before start getting results.

Tuples Retrieval

e Executor is based on demand-pull interface.

 There are mainly two types of Plan node execution:
single-tuple retrieval and multiple tuples retrieval.

e single-tuple retrieval
— At each node in the plan, a tuple is requested from the
children nodes through a call to the function

ExecProcNode. After processing input tuples, one
output tuple is constructed and returned to the caller.

— Examples: scan, join, sort

 multiple tuples retrieval
— If a node does not support one-by-one retrieval, all tuples
are processed and returned to the caller in some structure
f\ﬁ.g. hash table or a bitmap table). In this case, caller use
ultiExecProcNode interface.

— Examples: bitmap scan, hash

Example

S9POND0IdI9X]

19

Node Execution State

 ExecProcNode is reentrant procedure. The state of
the previous execution (e.g. which tuples are already
retrieved) must be stored.

 Each Plan node has a corresponding PlanState to
store execution state. (e.g. Hash and HashState

structures).

IC I'1doll JUIII

\Via'a¥aal

C ~t
SYymmeti
 Hash Join Algorithm

* Hybrid Hash Join (current implementation in
PostgreSQL)

e Symmetric Hash Join

Hash Join

 Hash Join can be used when the join condition
involves equality predicates only.

e |t does not require sorted inputs. However, it
requires one or more input relations to be
hashed.

 Any hash join algorithm is based on two
operations:

— Hash table construction
— Hash table probing

e A hashing function is used to map each key value of a
tuple to a bucket number.

e The tuple is stored in the resulting bucket.
e Each bucket could contain zero or more tuples.

[Hash Function (f,) P Bucket Number

Hash Value

ICREg Bucket 1 (t, t,,,..)
Key 2

mammd Bucket 2 (tj » Y ,er)

Key 3 5

Hash Join Algorithm

1. Build a hash table that contains
all tuples from inner relation.
2. For each tuple ‘t”in the outer
relation:
a. probe the hash table using
the hash value of t
b. If a match found, return it

Hash Table B
Key 1 t, b, ...
Key2 | t4,t, ...
\Oe
Q(o hash A B
Outer Relation Inner Relation

Source A Source B

Hvbrid Hash Join

llyw 1 1A 11 JWwvIil1

Implemented in PostgreSQL 8.1.4.

Addresses the problem of insufficient memory to
keep the hash table.

The hash table is divided into “batches” based on a
secondary hash function.

Only one batch resides in the memory at a time.

H[Hash Function (f,;) P Bucket Number

H[Hash Function (f,) F Batch Number

Hybrid Hash Join

Example : Assume we need to divide tuples into B = 2°
buckets and N = 2" batches using one hashing
function f,.

bucket = f,(Key) MOD B
batch = [1, (Key)/B | MOD N

Hash Val
Hash Value _ oon Ve
. . Keyl ——> Bucket 1
bit b bit
n DItS s Batch 1 —

\ Y]\ Y J Key2 —— Bucket 2
Batch Bucket Batch2 J Key3 Bucket 1
number number

= Keyd Bucket 2
Batch 3 =

 Thereis only one batch in memory at one time. We
call it the “current batch”.

Batch= current batch (Insert into hash
L table

[Spill to disk]

Batch != current batch L (temp file)

e Disk-resident batches are retrieved in order. After
processing each batch, we discard it.

 The join algorithm is modified to handle multiple
batches as follows:

outer (probe inner (hash)

Batch 1 Batch 1
Batch 2 Batch 2
Batch ... Batch ...

Relation A Relation B

1. Build a hash table that contains all tuples from inner relation. Keep the first
batch in memory and spill remaining batches to disk.
2. For each tuple in the outer relation:
a. If hash value of tuple t belong to the “current batch”, probe the hash table
and if a match found, return it.
b. Else, spill to corresponding batch on disk.
3. Load successive batches from inner and outer and process their tuples.

A2: Symmetric Hash Join

e Avoids the “blocking” effect of the hash table.
e Creates two hash tables, one for each relation.
e We assume in this assignment that the hash tables fit into

the memory.

Hash Table A

Key 1

tuples

Key 2

tuples

Key 1

tuples

Key 3

tuples

Key 2

tuples

hash

obe

Source A

proke

ash

Source B

Hash Table B

Symmetric Hash Join Plan

Get one tuple from A and insert it into
Hash Table A.

Use tuple obtained from A to probe
Hash table B. If match found return it.
Get one tuple from B and insert it into
Hash Table B.

Use tuple obtained from B to probe
Hash table A. If match found return it.
Stop when all tuples from A and B are

conciimaoed
NI TIATLTINGCG A,

Outer Relation

Inner Relation

Implementing Symmetric Hash Join

Tasks:

Insert additional hash node on top of outer relation.

Modify the hash operator to support single-tuple
retrieval.

Modify execution state to keep additional
information (e.g. current tuple in inner relation).
Modify the hash join implementation to use the
symmetric hash join algorithm.

Questions?

