
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Storage and Indexing

Chapter 8

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Data on External Storage
 Disks: Can retrieve random page at fxed cost

 But reading several consecutive pages is much cheaper than
reading them in random order

 Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage

 File organization: Method of arranging a fle of records
on external storage.
 Record id (rid) is suffcient to physically locate record
 Indexes are data structures that allow us to fnd the record ids of

records with given values in index search key felds

 Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index
layers make calls to the buffer manager.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Alternative File Organizations

Many alternatives exist, each ideal for some
situations, and not so good in others:
 Heap (random order) fles: Suitable when typical

access is a fle scan retrieving all records.
 Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.
 Indexes: Data structures to organize records via

trees or hashing.
• Like sorted fles, they speed up searches for a subset of

records, based on values in certain (“search key”) felds
• Updates are much faster than in sorted fles.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Indexes
 An index on a fle speeds up selections on the

search key felds for the index.
 Any subset of the felds of a relation can be the

search key for an index on the relation.
 Search key is not the same as key (minimal set of

felds that uniquely identify a record in a relation).
 An index contains a collection of data entries,

and supports effcient retrieval of all data
entries k* with a given key value k.
 Given data entry k*, we can fnd record with key k

in at most one disk I/O. (Details soon …)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

B+ Tree Indexes

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages
(Sorted by search key)

Leaf

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*
 Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
 And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries
in leaf level are sorted

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Hash-Based Indexes

 Good for equality selections.
 Index is a collection of buckets.

 Bucket = primary page plus zero or more overfow
pages.

 Buckets contain data entries.
 Hashing function h: h(r) = bucket in which

(data entry for) record r belongs. h looks at the
search key felds of r.
 No need for “index entries” in this scheme.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Alternatives for Data Entry k* in Index

 In a data entry k* we can store:
 Data record with key value k, or

 <k, rid of data record with search key value k>, or

 <k, list of rids of data records with search key k>

 Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.
 Examples of indexing techniques: B+ trees, hash-

based structures

 Typically, index contains auxiliary information that
directs searches to the desired data entries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Alternatives for Data Entries (Contd.)

 Alternative 1:
 If this is used, index structure is a fle organization

for data records (instead of a Heap fle or sorted
fle).

 At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

 If data records are very large, # of pages containing
data entries is high. Implies size of auxiliary
information in the index is also large, typically.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Alternatives for Data Entries (Contd.)

 Alternatives 2 and 3:
 Data entries typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, is much
smaller than with Alternative 1.)

 Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fxed length.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Index Classifcation

 Primary vs. secondary: If search key contains
primary key, then called primary index.
 Unique index: Search key contains a candidate key.

 Clustered vs. unclustered: If order of data records
is the same as, or `close to’, order of data entries,
then called clustered index.
 Alternative 1 implies clustered; in practice, clustered

also implies Alternative 1 (since sorted fles are rare).
 A fle can be clustered on at most one search key.
 Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Clustered vs. Unclustered Index
 Suppose that Alternative (2) is used for data entries,

and that the data records are stored in a Heap fle.
 To build clustered index, frst sort the Heap fle (with

some free space on each page for future inserts).
 Overfow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
 B: The number of data pages
 R: Number of records per page
 D: (Average) time to read or write disk page
 Measuring number of page I/O’s ignores gains of

pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

 Average-case analysis; based on several simplistic
assumptions.

 Good enough to show the overall trends!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Comparing File Organizations

 Heap fles (random order; insert at eof)
 Sorted fles, sorted on <age, sal>
 Clustered B+ tree fle, Alternative (1), search

key <age, sal>
 Heap fle with unclustered B + tree index on

search key <age, sal>
 Heap fle with unclustered hash index on

search key <age, sal>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Operations to Compare

 Scan: Fetch all records from disk
 Equality search
 Range selection
 Insert a record
 Delete a record

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Assumptions in Our Analysis
 Heap Files:

 Equality selection on key; exactly one match.

 Sorted Files:
 Files compacted after deletions.

 Indexes:
 Alt (2), (3): data entry size = 10% size of record
 Hash: No overfow buckets.

• 80% page occupancy => File size = 1.25 data size

 Tree: 67% occupancy (this is typical).
• Implies fle size = 1.5 data size

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Assumptions (contd.)

 Scans:
 Leaf levels of a tree-index are chained.

 Index data-entries plus actual fle scanned for
unclustered indexes.

 Range searches:
 We use tree indexes to restrict the set of data

records fetched, but ignore hash indexes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Cost of Operations
 (a) Scan (b)

Equality
(c) Range (d) Insert (e) Delete

(1) Heap

(2) Sorted

(3) Clustered

(4) Unclustered
Tree index

(5) Unclustered
Hash index

 Several assumptions underlie these (rough) estimates!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

 Several assumptions underlie these (rough) estimates!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Understanding the Workload

 For each query in the workload:
 Which relations does it access?
 Which attributes are retrieved?
 Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

 For each update in the workload:
 Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?
 The type of update (INSERT/DELETE/UPDATE), and the

attributes that are affected.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Choice of Indexes

 What indexes should we create?
 Which relations should have indexes? What feld(s)

should be the search key? Should we build several
indexes?

 For each index, what kind of an index should it
be?
 Clustered? Hash/tree?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Choice of Indexes (Contd.)

 One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.
 Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!

 For now, we discuss simple 1-table queries.

 Before creating an index, must also consider the
impact on updates in the workload!
 Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Index Selection Guidelines
 Attributes in WHERE clause are candidates for index keys.

 Exact match condition suggests hash index.
 Range query suggests tree index.

• Clustering is especially useful for range queries; can also help on
equality queries if there are many duplicates.

 Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
 Order of attributes is important for range queries.
 Such indexes can sometimes enable index-only strategies for

important queries.
• For index-only strategies, clustering is not important!

 Try to choose indexes that beneft as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would beneft the
most from clustering.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Examples of Clustered Indexes

 B+ tree index on E.age can be
used to get qualifying tuples.
 How selective is the condition?
 Is the index clustered?

 Consider the GROUP BY query.
 If many tuples have E.age > 10, using

E.age index and sorting the retrieved
tuples may be costly.

 Clustered E.dno index may be better!

 Equality queries and duplicates:
 Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Indexes with Composite Search Keys

 Composite Search Keys: Search
on a combination of felds.
 Equality query: Every feld

value is equal to a constant
value. E.g. wrt <sal,age> index:

• age=20 and sal =75

 Range query: Some feld value
is not a constant. E.g.:

• age =20; or age=20 and sal > 10

 Data entries in index sorted
by search key to support
range queries.
 Lexicographic order, or
 Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Composite Search Keys

 To retrieve Emp records with age=30 AND sal=4000,
an index on <age,sal> would be better than an index
on age or an index on sal.
 Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:
 Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:
 Clustered <age,sal> index much better than <sal,age>

index!

 Composite indexes are larger, updated more often.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Index-Only Plans

 A number of
queries can be
answered
without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable index
is available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

 E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
 or
<E.sal, E.age>

Tree index!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Index-Only Plans (Contd.)

 Index-only plans
are possible if the
key is <dno,age>
or we have a tree
index with key
<age,dno>
 Which is better?
 What if we

consider the
second query?

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age=30
GROUP BY E.dno

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>30
GROUP BY E.dno

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Index-Only Plans (Contd.)

 Index-only
plans can also
be found for
queries
involving more
than one table;
more on this
later.

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

<E.dno>

<E.dno,E.eid>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Summary

 Many alternative fle organizations exist, each
appropriate in some situation.

 If selection queries are frequent, sorting the
fle or building an index is important.
 Hash-based indexes only good for equality search.
 Sorted fles and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

 Index is a collection of data entries plus a way
to quickly fnd entries with given key values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Summary (Contd.)

 Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
 Choice orthogonal to indexing technique used to

locate data entries with a given key value.

 Can have several indexes on a given fle of
data records, each with a different search key.

 Indexes can be classifed as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Summary (Contd.)
 Understanding the nature of the workload for the

application, and the performance goals, is essential
to developing a good design.
 What are the important queries and updates? What

attributes/relations are involved?
 Indexes must be chosen to speed up important

queries (and perhaps some updates!).
 Index maintenance overhead on updates to key felds.
 Choose indexes that can help many queries, if possible.
 Build indexes to support index-only strategies.
 Clustering is an important decision; only one index on a

given relation can be clustered!
 Order of felds in composite index key can be important.

