

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 1

Data Warehousing and Decision
Support

Chapter 23, Part B

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 2

Views and Decision Support

 OLAP queries are typically aggregate queries.
 Precomputation is essential for interactive response

times.

 The CUBE is in fact a collection of aggregate queries,
and precomputation is especially important: lots of
work on what is best to precompute given a limited
amount of space to store precomputed results.

 Warehouses can be thought of as a collection of
asynchronously replicated tables and
periodically maintained views.
 Has renewed interest in view maintenance!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 3

View Modifcation (Evaluate On Demand)

CREATE VIEW RegionalSales(category,sales,state)
AS SELECT P.category, S.sales, L.state
 FROM Products P, Sales S, Locations L
 WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R GROUP BY R.category, R.state

SELECT R.category, R.state, SUM(R.sales)
FROM (SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid) AS R

GROUP BY R.category, R.state

View

Query

Modifed
Query

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 4

View Materialization (Precomputation)

 Suppose we precompute RegionalSales and store
it with a clustered B+ tree index on
[category,state,sales].
 Then, previous query can be answered by an index-

only scan.
SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R.category=“Laptop”
GROUP BY R.state

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R. state=“Wisconsin”
GROUP BY R.category

Index on precomputed view
is great!

Index is less useful (must
scan entire leaf level).

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Materialized Views

 A view whose tuples are stored in the database
is said to be materialized.
 Provides fast access, like a (very high-level) cache.

 Need to maintain the view as the underlying tables
change.

 Ideally, we want incremental view maintenance
algorithms.

 Close relationship to data warehousing, OLAP,
(asynchronously) maintaining distributed
databases, checking integrity constraints, and
evaluating rules and triggers.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

Issues in View Materialization

 What views should we materialize, and what
indexes should we build on the precomputed
results?

 Given a query and a set of materialized
views, can we use the materialized views to
answer the query?

 How frequently should we refresh
materialized views to make them consistent
with the underlying tables? (And how can we
do this incrementally?)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 7

View Maintenance

 Two steps:
 Propagate: Compute changes to view when data changes.

 Refresh: Apply changes to the materialized view table.

 Maintenance policy: Controls when we do refresh.
 Immediate: As part of the transaction that modifes the

underlying data tables. (+ Materialized view is always
consistent; - updates are slowed)

 Deferred: Some time later, in a separate transaction. (- View
becomes inconsistent; + can scale to maintain many views
without slowing updates)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 8

Deferred Maintenance

 Three favors:
 Lazy: Delay refresh until next query on view; then

refresh before answering the query.

 Periodic (Snapshot): Refresh periodically. Queries
possibly answered using outdated version of view
tuples. Widely used, especially for asynchronous
replication in distributed databases, and for
warehouse applications.

 Event-based: E.g., Refresh after a fxed number of
updates to underlying data tables.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 9

Snapshots in Oracle 7

 A snapshot is a local materialization of a view
on data stored at a master site.
 Periodically refreshed by re-computing view

entirely.

 Incremental “fast refresh” for “simple snapshots”
(each row in view based on single row in a single
underlying data table; no DISTINCT, GROUP BY,
or aggregate ops; no sub-queries, joins, or set ops)

• Changes to master recorded in a log by a trigger to
support this.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

Issues in View Maintenance (1)

 What information is available? (Base relations,
materialized view, ICs). Suppose parts(p5,5000)
is inserted:
 Only materialized view available: Add p5 if it isn’t

there.

 Parts table is available: If there isn’t already a parts
tuple p5 with cost >1000, add p5 to view.

• May not be available if the view is in a data warehouse!

 If we know pno is key for parts: Can infer that p5 is
not already in view, must insert it.

expensive_parts(pno) :- parts(pno, cost), cost > 1000

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

Issues in View Maintenance (2)

 What changes are propagated? (Inserts, deletes,
updates). Suppose parts(p1,3000) is deleted:
 Only materialized view available: If p1 is in view, no

way to tell whether to delete it. (Why?)
• If count(#derivations) is maintained for each view tuple, can

tell whether to delete p1 (decrement count and delete if = 0).

 Parts table is available: If there is no other tuple p1
with cost >1000 in parts, delete p1 from view.

 If we know pno is key for parts: Can infer that p1 is
currently in view, and must be deleted.

expensive_parts(pno) :- parts(pno, cost), cost > 1000

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

Issues in View Maintenance (3)

 View defnition language? (Conjunctive queries,
SQL subset, duplicates, aggregates, recursion)

 Suppose parts(p5,5000) is inserted:
 Can’t tell whether to insert p5 into view if we’re only

given the materialized view.

Supp_parts(pno) :- suppliers(sno, pno), parts(pno, cost)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Incremental Maintenance Alg: One Rule, Inserts

 Step 0: For each tuple in the materialized view, store
a “derivation count”.

 Step 1: Rewrite this rule using Seminaive rewriting,
set “delta_old” relations for Rel1 and Rel2 to be the
inserted tuples.

 Step 2: Compute the “delta_new” relations for the
view relation.
 Important: Don’t remove duplicates! For each new tuple,

maintain a “derivation count”.

 Step 3: Refresh the stored view by doing “multiset
union” of the new and old view tuples. (I.e., update
the derivation counts of existing tuples, and add the
new tuples that weren’t in the view earlier.)

View(X,Y) :- Rel1(X,Z), Rel2(Z,Y)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

Incremental Maintenance Alg: One Rule, Deletes

 Steps 0 - 2: As for inserts.
 Step 3: Refresh the stored view by doing

“multiset difference ” of the new and old
view tuples.
 To update the derivation counts of existing tuples,

we must now subtract the derivation counts of the
new tuples from the counts of existing tuples.

View(X,Y) :- Rel1(X,Z), Rel2(Z,Y)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Incremental Maintenance Alg: General

 The “counting” algorithm can be generalized
to views defned by multiple rules. In fact, it
can be generalized to SQL queries with
duplicate semantics, negation, and
aggregation.
 Try and do this! The extension is straightforward.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Maintaining Warehouse Views

 Main twist: The views are in the data warehouse,
and the source tables are somewhere else
(operational DBMS, legacy sources, …).

1) Warehouse is notifed whenever source tables are
updated. (e.g., when a tuple is added to r2)

1) Warehouse may need additional information about
source tables to process the update (e.g., what is in r1
currently?)

1) The source responds with the additional info, and the
warehouse incrementally refreshes the view.

view(sno) :- r1(sno, pno), r2(pno, cost)

Problem:
New source
updates
between
Steps 1 and
3!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 17

Example of Warehouse View Maint.

 Initially, we have r1(1,2), r2 empty
 insert r2(2,3) at source; notify warehouse
 Warehouse asks ?r1(sno,2)

 Checking to fnd sno’s to insert into view

 insert r1(4,2) at source; notify warehouse
 Warehouse asks ?r2(2,cost)

 Checking to see if we need to increment count for view(4)

 Source gets frst warehouse query, and returns sno=1, sno=4; these
values go into view (with derivation counts of 1 each)

 Source gets second query, and says Yes, so count for 4 is
incremented in the view
 But this is wrong! Correct count for view(4) is 1.

view(sno) :- r1(sno, pno), r2(pno, cost)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 18

Warehouse View Maintenance

 Alternative 1: Evaluate view from scratch
 On every source update, or periodically

 Alternative 2: Maintain a copy of each source
table at warehouse

 Alternative 3: More fancy algorithms
 Generate queries to the source that take into account

the anomalies due to earlier conficting updates.

