
1

CSIS 7102 Spring 2004
Lecture 10: ARIES

Dr. King-Ip Lin

2

ARIES

 State of the art recovery manager
 Developed by Mohan et al at IBM
 Characteristics:

 Simple but flexible
 Support operation logging (handle recovery in

case of insert/delete operations)
 Fast recovery and minimum overhead
 Parallelism
 Support fine granularity locking
 Support isolation levels

3

Logs in ARIES

 Log sequence number (LSN)
 Associated with each log record
 Unique for each log record
 Sequentially increasing
 Typical implementation

 Offset to the start of a log file
 Enable each log record to be located

quickly – crucial for ARIES
 One can have multiple log files, each keep

track of log at certain time. Then use file
name and offset to uniquely identify the
LSN

4

Logs in ARIES

 Each disk page is associated with a
PageLSN
 the LSN of the last log record whose

effects are reflected on the page
 How can it be used?

 During recovery, if a given page’s
PageLSN > LSN of a log record that act on
that page, no need to redo that log record
(Why?)

5

Logs in ARIES

 Each log entry also store a PrevLSN
 The previous LSN of the same

transaction that is adding this log
record

 Thus a log record in ARIES looks
like this:

LSN TransId PrevLSN RedoInfo UndoInfo

6

Logs in ARIES

 Compensation log records (CLR)
 Log record generated during undo

phase of recovery
 Enable recovery mechanism to avoid

undo same operation again
 Have a field UndoNextLSN to note next

(earlier) record to be undone
 Records in between would have already

been undone
 Required to avoid repeated undo of

already undone actions
LSN TransID UndoNextLSN RedoInfo

7

Logs in ARIES

 When an undo is performed for an
update log record
 Generate a CLR containing the undo action

performed (actions performed during undo are
logged physicaly or physiologically).

 CLR for record n noted as n’ in figure below
 Set UndoNextLSN of the CLR to the PrevLSN

value of the update log record
 Arrows indicate UndoNextLSN value

1 2 3 4 4' 3' 5 6 5' 2' 1'6'

8

Latches

 One requirement for ARIES: No updates should
be in progress on a block (page) when it is
output to disk

 To ensure this:
 Before writing a data item, transaction acquires

exclusive lock on block containing the data item
 Lock can be released once the write is completed.

 Such locks held for short duration are called
latches.

 Before a block is output to disk, the system
acquires an exclusive latch on the block

 Ensures no update can be in progress on the block
 Notice that latches and locks are not necessarily

the same
 One can lock at very fine granularity but in case of

writing to disk, it still needs latches on the block
(page)

9

Redo/Undo in ARIES

 Physiological redo
 Affected page is physically identified,

action within page can be logical
 Used to reduce logging overheads

 e.g. when a record is deleted and all other
records have to be moved to fill hole

 Physiological redo can log just the record
deletion

 Physical redo would require logging of old
and new values for much of the page

10

Redo/Undo in ARIES

 Implications:
 Requires page to be output to disk atomically

 Easy to achieve with hardware RAID, also
supported by some disk systems

 Incomplete page output can be detected by
checksum techniques,

 But extra actions are required for recovery
 Treated as a media failure

 Redo/undo operations not necessary
idempotent

 Thus using LSN and compensation log records
to avoid redo/undo again

 On the other hand, this enable finer grain
locking and other fancy operations to be
recovered.

11

Data structures in ARIES

 Extra data structure maintained during normal
operations
 To enhance efficiency during recovery
 To allow easier checkpointing

 DirtyPageTable
 List of pages in the buffer that have been updated
 Contains, for each such page

 PageLSN of the page
 RecLSN is an LSN such that log records before this

LSN have already been applied to the page version
on disk

 Set to current end of log when a page is inserted into
dirty page table (just before being updated)

 Recorded in checkpoints, helps to minimize redo work

12

Data structures in ARIES

 Transaction table
 Keep track of current active

transactions
 Maintain the prevLSN of each

transaction
 Also keep the UndoNxtLSN in case of

recovery

13

Fuzzy checkpoints

 Asynchronous checkpointing
 i.e. processing do not stop during checkpointing

 Start by writing a <begin chkpt> record to the log
 Then construct a <end chkpt> record containing

 Transaction table
 Dirty page table

 Write the <end chkpt> record to stable storage
 Then write the LSN of the <begin chkpt> record

to some stable storage
 Normal processing are allowed between writing of

the <begin chkpt> and <end chkpt> record

14

ARIES : Normal operation

 During normal operations, when
updates to a record on a page
occurs

1. Record is locked
2. Page is latched in the X mode
3. Log record is written
4. LSN of the log record is placed on

transaction table
5. Update is performed
6. pageLSN of the page is updated
7. Page is unlatched

15

ARIES : Normal operation

o Page latching before writing log is crucial
 Guarantees LSN corresponds to the order of

updates (if locking is at a finer level than
page)

o On the other hand, in cases where lock
granularity is page (or coarser) and
strict 2-phase locking is used, then
latches are not necessary

o Fuzzy checkpoints are made periodically

16

ARIES : Recovery

ARIES recovery involves three passes
 Analysis pass: Determines

 Which transactions to undo
 Which pages were dirty (disk version not up to

date) at time of crash
 RedoLSN: LSN from which redo should start

 Redo pass:
 Repeats history, redoing all actions from RedoLSN

 RecLSN and PageLSNs are used to avoid redoing
actions already reflected on page

 Undo pass:
 Rolls back all incomplete transactions

 Transactions whose abort was complete earlier
are not undone
 Key idea: no need to undo these transactions: earlier

undo actions were logged, and are redone as required

17

ARIES : Recovery : Analysis

Analysis pass
1. Starts from last complete checkpoint log

record
 Reads in DirtyPageTable from log record
 Sets RedoLSN = min of RecLSNs of all pages

in DirtyPageTable
 In case no pages are dirty, RedoLSN =

checkpoint record’s LSN
 Sets undo-list = list of transactions in

checkpoint log record
 Reads LSN of last log record for each

transaction in undo-list from checkpoint log
record

18

ARIES : Recovery : Analysis

1. Scans forward from checkpoint
 If any log record found for transaction not in

undo-list, adds transaction to undo-list
 Whenever an update log record is found

 If page is not in DirtyPageTable, it is added
with RecLSN set to LSN of the update log
record

 If transaction end log record found, delete
transaction from undo-list

 Keeps track of last log record for each
transaction in undo-list
 May be needed for later undo

19

ARIES : Recovery : Analysis

 At end of analysis pass:
 RedoLSN determines where to start

redo pass
 RecLSN for each page in

DirtyPageTable used to minimize redo
work

 All transactions in undo-list need to be
rolled back

20

ARIES : Recovery : Redo

Redo Pass: Repeats history by replaying every
action not already reflected in the page on disk,
as follows:

 Scans forward from RedoLSN. Whenever an
update log record is found:

1. If the page is not in DirtyPageTable or the LSN of
the log record is less than the RecLSN of the page
in DirtyPageTable, then skip the log record

2. Otherwise fetch the page from disk. If the
PageLSN of the page fetched from disk is less than
the LSN of the log record, redo the log record

NOTE: if either test is negative the effects of the log
record have already appeared on the page. First
test avoids even fetching the page from disk!

21

ARIES : Recovery : Undo

Undo pass
 Performs backward scan on log undoing all

transaction in undo-list
 Backward scan optimized by skipping unneeded

log records as follows:
 Next LSN to be undone for each transaction set to

LSN of last log record for transaction found by
analysis pass.

 At each step pick largest of these LSNs to undo,
skip back to it and undo it

 After undoing a log record
 For ordinary log records, set next LSN to be undone for

transaction to PrevLSN noted in the log record
 For compensation log records (CLRs) set next LSN to be

undo to UndoNextLSN noted in the log record
 All intervening records are skipped since they

would have been undo already
 Undos performed as described earlier

22

ARIES : Recovery : Undo/redo

Undo/Redo pass
 Note that pageLSN is updated

during recovery
 E.g. when log record 8 is being redo,

the corresponding pageLSN is set to
8.

 When the page is flushed to the disk,
the new pageLSN will denote that the
page is already redone

 Important to ensure undo/redo not
repeated unnecessarily.

23

ARIES : Crash during recovery

 Crash during analysis
 No harm done. Restart analysis

 Crash during redo
 Repeat whole process.
 Use pageLSN to avoid unnecessary

redo
 Crash during undo

 During redo stage, redo both action
and CLR if necessary

 Once again, use pageLSN to see what
action need to be undone

24

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

Page # RecLSN PageLS
N

Transaction table

Dirty page table

25

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 1 0

Page # RecLSN PageLS
N

1 0 1

Transaction table

Dirty page table

26

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 1 0

2 2 0

Page # RecLSN PageLS
N

1 0 1

2 1 2

Transaction table

Dirty page table

27

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

2 2 0

Page # RecLSN PageLS
N

1 0 3

2 1 2

Transaction table

Dirty page table

28

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

2 2 0

3 4 0

Page # RecLSN PageLS
N

1 0 3

2 1 2

4 3 4

Transaction table

Dirty page table

29

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

2 2 0

3 4 0

Page # RecLSN PageLS
N

1 0 3

2 1 2

4 3 4

Transaction table

Dirty page table PageLSN of 1 on disk = 3

30

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

2 2 0

3 4 0

Page # RecLSN PageLS
N

2 1 2

4 3 4

Transaction table

Dirty page table

31

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

3 4 0

Page # RecLSN PageLS
N

2 1 2

4 3 4

Transaction table

Dirty page table

32

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

3 4 0

4 8 0

Page # RecLSN PageLS
N

2 1 2

4 3 4

3 6 7

Transaction table

Dirty page table

33

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

3 4 0

4 7 0

Page # RecLSN PageLS
N

2 1 2

4 3 4

3 6 7

Transaction table

Dirty page table PageLSN of 4 on disk = 4

34

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

3 9 0

4 7 0

Page # RecLSN PageLS
N

2 1 9

3 6 7

Transaction table

Dirty page table

35

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 3 0

3 9 0

4 7 0

Page # RecLSN PageLS
N

2 1 9

3 6 7

Transaction table

Dirty page table

36

ARIES : Example

1. T1 write page 1
2. T2 write page 2
3. T1 write page 1
4. T3 write page 4
(Page 1 flushed to disk)
1. T2 commits
2. Begin Checkpoint
3. End Checkpoint
4. T4 write page 3
(Page 4 flushed to disk)
1. T3 write page 2
2. T3 commits
3. T1 writes page 4
Crash!

T # Prev LSN Undonext
LSN

1 11 0

4 7 0

Page # RecLSN PageLS
N

2 1 8

4 10 11

3 6 7

Transaction table

Dirty page table

37

ARIES : Example

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>
Notation: <Trans#, page

#, PrevLSN>

T # Prev LSN Undonext
LSN

1 10 0

4 7 0

Page # RecLSN PageLS
N

2 1 8

4 9 10

3 6 7

Transaction table

Dirty page table

38

ARIES : Example (Analysis: step 1)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3) = 1
 Undo-list = {T1, T3}

T # Last LSN Undonext
LSN

1 3

3 4

Page # RecLSN PageLS
N

2 1 3

4 3 4

Undo list

Dirty page table

39

ARIES : Example (Analysis: step 2)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3, 8) =
1

 Undo-list = {T1, T3, T4}

T # Last LSN Undonext
LSN

1 3 0

3 4 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

40

ARIES : Example (Analysis: step 2)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3, 8) =
1

 Undo-list = {T1, T3, T4}

T # Last LSN Undonext
LSN

1 3 0

3 9 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

41

ARIES : Example (Analysis: step 2)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3, 8) =
1

 Undo-list = {T1, T3, T4}

T # Last LSN Undonext
LSN

1 3 0

3 9 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

42

ARIES : Example (Analysis: step 2)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3, 8) =
1

 Undo-list = {T1, T4}

T # Last LSN Undonext
LSN

1 11 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

43

ARIES : Example (Redo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3,
8) = 1

 Redo start at first step

T # Last LSN Undonext
LSN

1 11 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

No redo, page not
in dirty page table

44

ARIES : Example (Redo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3,
8) = 1

 Redo start at first step

T # Last LSN Undonext
LSN

1 11 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

2 > 1, thus read
page 2
PageLSN 2 = 0,
thus redo

45

ARIES : Example (Redo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3,
8) = 1

 Redo start at first step

T # Last LSN Undonext
LSN

1 11 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

4 > 3, read page
4
But PageLSN =
4, so NO redo

46

ARIES : Example (Redo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>

 RedoLSN = min(1, 3,
8) = 1

 Redo start at first step

T # Last LSN Undonext
LSN

1 11 0

4 8 0

Page # RecLSN PageLS
N

2 1 3

4 3 4

3 7 --

Undo list

Dirty page table

Other
operations
need redo

47

ARIES : Example (Undo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>
7. <CLR, T1, 4, 3>
Notation for CLR: <CLR,

transaction #, page #,
nextundoLSN>

T # Last LSN Undonext
LSN

1 11 0

4 8 0
Undo list

• Next record to undo = max(11,
8) = 11

• CLR written

• Last LSN T1 = prevLSN of record
11 = 3

48

ARIES : Example (Undo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>
7. <CLR, T1, 4, 3>
8. <CLR, T4, 3, ->

T # Last LSN Undonext
LSN

1 3 0

4 8 0
Undo list

• Next record to undo = max(3,
8) = 3

• CLR written

• Last LSN = “-”, T4 removed from
undo list

49

ARIES : Example (Undo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>
7. <CLR, T1, 4, 3>
8. <CLR, T4, 3, ->
9. <CLR, T1, 1, 1>

T # Last LSN Undonext
LSN

1 3 0

Undo list

• Next record to undo = 3

• CLR written

• Last LSN set to prevLSN of
recotd = 1

50

ARIES : Example (Undo)

Log at crash
 <T1, 1, ->
 <T2, 2, ->
 <T1, 1, 1>
 <T3, 4, ->
 <T2 commits>
1. <begin_chkpt>
2. <end_chkpt>
3. <T4, 3, ->
4. <T3, 2, 4>
5. <T3, commits>
6. <T1, 4, 3>
7. <CLR, T1, 4, 3>
8. <CLR, T4, 3, ->
9. <CLR, T1, 1, 1>
10. <CLR, T1, 1, ->

T # Last LSN Undonext
LSN

1 1 0

Undo list

• Next record to undo = 1

• CLR written

• Last LSN = “-”. T1 removed

• No transaction left, recovery
finished.

51

ARIES : Other features

 Recovery Independence
 Pages can be recovered independently

of others
 E.g. if some disk pages fail they can be

recovered from a backup while other
pages are being used

 Savepoints:
 Transactions can record savepoints

and roll back to a savepoint
 Useful for complex transactions
 Also used to rollback just enough to

release locks on deadlock

52

ARIES : Other features

 Fine-grained locking:
 Index concurrency algorithms that permit

tuple level locking on indices can be used
 These require logical undo, rather than

physical undo, as in advanced recovery
algorithm

 Recovery optimizations: For example:
 Dirty page table can be used to prefetch

pages during redo
 Out of order redo is possible:

 redo can be postponed on a page being
fetched from disk, and
 performed when page is fetched.

 Meanwhile other log records can continue to
be processed

