
Lecture 2 

Uninformed search 



" Reference: Preparing for week 1 

•  Reading:  
–  Chapters 1 and 2.1, 2.2, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5 

•  Assignment 1 has now been posted on the course LEARN site 
–  Uses MATLAB (a tutorial is included) 
–  Companion a1-student-stuff.zip file  



Academic AI versus “Game AI” 
•  Academic AI is concerned with optimal performance. 
•  Game AI has been more about  creating a compelling 

experience for the player, giving illusion of intelligence. 
•  In the past, techniques used for Game AI tended to differ 

from Academic AI. Game designers concerned with real-
time constraints, tight schedules, fast advances, … 

•  But now Game AI is moving into serious games: health, 
business, education, …  

•  How will Game AI evolve? 
•  Course theme: Enormous potential for improved game AI. 

. 



" Outline: Search topics 

•  Different search algorithms 
–  review of breadth-first, depth-first = uninformed (“brute-force”) 

search algorithms 
–  informed (“heuristic”) search 
–  backtracking search for constraint satisfaction problems (CSP) 
–  local search 

•  There are also different forms of  representations 
–  variable-based / Constraint Satisfaction Problem representations 
–  predicates / STRIPS-rules representations 



" Definition: Problem-solving agent 

•  Artificial intelligence as problem-solving in a search space: 

•  Goal-based agents decide what to do by finding sequences 
of actions that lead to desirable states. 



" Example: n-queens 

Place n-queens on an 
n × n board so that no 
pair of queens attacks 
each other. 



" Example: Sliding puzzles 

Initial configuration Goal configuration 
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" Example: River crossing puzzle 

A father, his two 
sons, and a boat are 
on one side of a 
river. The capacity 
of boat is 100 kg. 
The father weighs 
100 kg and each son 
weighs 50 kg. How 
can they get across 
the river? 



" Example: Propositional satisfiability 

 Given a formula in propositional logic, determine if the 
Boolean variables can be assigned in such a way as to make 
the formula true.  

  (¬A ∨ B) ∧ 
  (¬B ∨ ¬C ∨ D) ∧ 
  (¬D ∨ G ∨ ¬E) ∧ 
  (¬D ∨ G ∨ ¬F) ∧ 
  A ∧ 
  C ∧ 
   ¬E 



" Example: Partition problem    

 Given a set of objects with weights, partition the 
objects into two sets U and V such that the total 
weights of U and V are as close as possible. 

Object a b c d e f g h 

Weight 5 7 10 10 11 15 16 16 



" Example: Travelling saleswoman problem 

 Starting at city A, find a route of minimal distance that 
visits each of the cities only once and returns to A. 
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" Example: Set covering problem 

 Find a minimum size committee of people that together 
have the skills necessary to accomplish a task. 

   SkillsNeeded = {a, b, c, d, e, f, g, h, i, j, k, l} 
   People = {p1, p2, p3, p4, p5, p6}, where 

  p1  has skills {a, b, e, f, i, j} 
  p2  has skills {f, g, j, k} 
  p3  has skills {a, b, c, d} 
  p4  has skills {c, e, f, g, h} 
  p5  has skills {i, j, k, l} 
  p6  has skills {d, h} 



" Example: Water jug problem 

  We are given two jugs: a 4 liter jug and a 3 liter jug. Neither has any 
measuring markers on it. There is a tap that can be used to fill the jugs 
with water. How can we get exactly 2 liters of water into the 4 liter jug? 

•  SOLUTION: 
•  Fill 3L jug 
•  Transfer all water in 3L jug into 4L jug 
•  Fill 3L jug 
•  Transfer water from 3L jug to 4L jug  

until 4L is full − now 2L water left in 3L jug 
•  Empty 4L jug onto ground 
•  Empty 3L jug into 4L jug 
•  There is now 2L water in 4L jug 



Contrasts in problem types 
•  Find a goal state, given constraints on the goal, not 

interested in sequence of actions 
–  Any goal state 

•  e.g., n-queens, crossword puzzles 
–  Optimal goal state 

•  e.g., traveling saleswoman problem, set covering problem 

•  Find a sequence of actions that lead to goal state 
–  Any sequence 

•  e.g., sliding puzzle, river crossing puzzle, water jug problem 
–  Optimal sequence 

•  e.g., sliding puzzle, … 



Methodology 
•  Formulate problem solving as search on a graph 
•  Given a problem to solve: 
1.   Create a Set of Nodes in a Graph:  

–  Specify representation of problem as a graph of nodes (states) 
–  Specify initial and goal states (‘distinguished’ states) 

2.  Define Arcs in Graph as Rules/Operators: 
–  Specify rules or operators  (arcs) to move current representation of 

problem from one state to another 
–  Also specify cost of each rule/operator 

3.  Search to Solve Problem: 
–  Find a path in the graph from the initial state to a goal state 
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Search graph for River Crossing Puzzle 

Initial Goal 

Each node indicates the position (Left or Right  
bank of the river) of: Father, Son1, Son2, Boat 



General search algorithm 

    L ← [start nodes] 
    while L ≠ empty do 
          select and remove a node from L, call it p 
          if p is a goal node, return(success) 
          generate all successor states of p, and add them to L 
    end while 
    return(fail) 

FIFO queue gives Breadth-First Search (BFS) 
LIFO queue gives Depth-First Search (DFS) 
Priority queue gives informed search (greedy, A*) 



What to do about repeated states? 

0.  Nothing 

1.  Don’t return to a state that you just came from 

2.  Do not create paths with cycles in them (look at   
 ancestors of a node) 

3.  Do not generate any state that was ever generated 
 before (keep a closed list using a hash table) 



Uninformed search 
•  Uninformed, or brute-force, search uses no knowledge 

about a particular problem. 
•  Works the same for all problems. 
•  Examples: Breadth-first search, depth-first search. 



" Example: Breadth-first search on the 8-puzzle 



" Example: Depth-first search on the 8-puzzle 



" Reference: Breadth-first versus depth-first search 

•  Complete? (guaranteed to find a solution) 
–  BFS: yes 
–  DFS: no (graph may have infinite branches) 

•  Optimal? (guaranteed to find solution at least depth?) 
–  BFS: yes (will find shortest) 
–  DFS: no (may find leftmost, but not shortest) 

•  b = branching factor, d = depth of solution, m = max depth of tree 
•  Time: (worst-case analysis) 

–  BFS = O (bd) 
–  DFS = O (bm) 

•  Space: 
–  BFS = O (bd) (always storing previous layer – suppose sol’n at bottom) 
–  DFS = O (bm) (all branches from path at each of m levels) (always storing 

successors) 



Improving on brute-force: 
Iterative-deepening search 

•  Idea: Combine space efficiency of depth-first search with optimality of 
breadth-first. 

•  Make a breadth-first search into interative-deepening search: 
–  Each iteration is a complete depth-first search with a cut-off (i.e., searches 

to a limited depth). 
–  Can throw away previous computation each time and begin again. 

•  Eventually will find solution if one exists. Solution is guaranteed to 
have fewest arcs. 

•  Unnatural versus natural failure: 
–  Depth limit is increased if DFS was truncated by reaching the depth limit. In 

this case, the search failed unnaturally.  
–  The search failed naturally if the search did not prune any paths due to the 

depth limit. In this case, the program can stop and report no (more) paths.  



" Reference: DFS with cut-off (Iterative-deepening) versus DFS 

•  Complete? (guaranteed to find a solution) 
–  Iterative-deepening: yes 
–  DFS: no  

•  Optimal? (guaranteed to find solution at least depth?) 
–  Iterative-deepening: yes  
–  DFS: no  

•  b = branching factor, d = depth of solution, m = max depth of tree 
•  Time: (worst-case analysis) 

–  Iterative-deepening = BFS = O (bd) 
•  Space: 

–  Iterative-deepening =similar to DFS = O (bd) (always storing previous layer 
but final layer dominates) 

•  Iterative=deepening search leads to very practical algorithms 



" Demo: Why computers can beat humans at chess 

•  Computers can use brute-force search to simulate moves ahead in chess 
game. Far more lookahead than humans can do! 

•  Applications: Chess, other alternate-player “zero-sum” games 
–  “Zero-sum”: Add up total player wins, subtract losses, sum is zero. 

•  From Text 10.3: 
–  In the case where two agents are competing so that a positive reward for one 

is a negative reward for the other agent, we have a two-agent zero-sum 
game. The value of such a game can be characterized by a single number 
that one agent is trying to maximize and the other agent is trying to 
minimize. Having a single value for a two-agent zero-sum game leads to a 
minimax strategy. Each node is either a MAX node, if it is controlled by 
the agent trying to maximize, or is a MIN node if it is controlled by the 
agent trying to minimize.  

•  (continued) 



" Demo: Why computers can beat humans at chess (cont) 

(comtinued) 
•  Can use clever method (alpha-beta pruning) to reduce the number of 

nodes that are searched. Stop evaluating a move if at least one 
possibility has been found that makes this move worse than a previously 
evaluated move. Thus, whole branches of the search tree can be 
avoided. 

•  In best case (best moves always searched first) search goes twice as 
deep with same amount of computation. 

•  Can also use heuristics to improve pruning, e.g., examine moves that 
take pieces before moves that do not. 

•  Demo: http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html 
•  Better demo but VERY slow: 

 http://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning 


