Lecture 2

Uninformed search

LD Reference: Preparing for week 1

- Reading:
- Chapters 1 and 2.1, 2.2, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5
- Assignment 1 has now been posted on the course LEARN site
- Uses MATLAB (a tutorial is included)
- Companion al-student-stuff.zip file

Academic AI versus "Game AI"

- Academic AI is concerned with optimal performance.
- Game AI has been more about creating a compelling experience for the player, giving illusion of intelligence.
- In the past, techniques used for Game AI tended to differ from Academic AI. Game designers concerned with realtime constraints, tight schedules, fast advances, ...
- But now Game AI is moving into serious games: health, business, education, ...
- How will Game AI evolve?
- Course theme: Enormous potential for improved game AI.

DD Outline: Search topics

- Different search algorithms
- review of breadth-first, depth-first = uninformed ("brute-force") search algorithms
- informed ("heuristic") search
- backtracking search for constraint satisfaction problems (CSP)
- local search
- There are also different forms of representations
- variable-based / Constraint Satisfaction Problem representations
- predicates / STRIPS-rules representations

Artificial intelligence as problem-solving in a search space:
Goal-based agents decide what to do by finding sequences of actions that lead to desirable states.

\square Example: n-queens

Place n-queens on an $n \times n$ board so that no pair of queens attacks each other.

T Example: Sliding puzzles

Initial configuration

Goal configuration

1	2	3
8		4
7	6	5

\square

IT

Given a formula in propositional logic, determine if the Boolean variables can be assigned in such a way as to make the formula true.

$$
\begin{aligned}
& (\neg \mathrm{A} \vee \mathrm{~B}) \wedge \\
& (\neg \mathrm{B} \vee \neg \mathrm{C} \vee \mathrm{D}) \wedge \\
& (\neg \mathrm{D} \vee \mathrm{G} \vee \neg \mathrm{E}) \wedge \\
& (\neg \mathrm{D} \vee \mathrm{G} \vee \neg \mathrm{~F}) \wedge \\
& \mathrm{A} \wedge \\
& \mathrm{C} \wedge \\
& \neg \mathrm{E}
\end{aligned}
$$

∇ Example: Partition problem

Given a set of objects with weights, partition the objects into two sets U and V such that the total weights of U and V are as close as possible.

Object	a	b	c	d	e	f	g	h
Weight	5	7	10	10	11	15	16	16

\square Example: Travelling saleswoman problem

Starting at city A, find a route of minimal distance that visits each of the cities only once and returns to A .

Find a minimum size committee of people that together have the skills necessary to accomplish a task.

$$
\begin{aligned}
& \text { SkillsNeeded }=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\} \\
& \text { People }=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}\right\}, \text { where } \\
& \\
& \quad \mathrm{p}_{1} \text { has skills }\{\mathrm{a}, \mathrm{~b}, \mathrm{e}, \mathrm{f}, \mathrm{i}, \mathrm{j}\} \\
& \\
& \mathrm{p}_{2} \text { has skills }\{\mathrm{f}, \mathrm{~g}, \mathrm{j}, \mathrm{k}\} \\
& \\
& \mathrm{p}_{3} \text { has skills }\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \\
& \mathrm{p}_{4} \text { has skills }\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}\} \\
& \\
& \mathrm{p}_{5} \text { has skills }\{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\} \\
& \\
& \mathrm{p}_{6} \text { has skills }\{\mathrm{d}, \mathrm{~h}\}
\end{aligned}
$$

\square

We are given two jugs: a 4 liter jug and a 3 liter jug. Neither has any measuring markers on it. There is a tap that can be used to fill the jugs with water. How can we get exactly 2 liters of water into the 4 liter jug?

- SOLUTION:
- Fill 3L jug
- Transfer all water in 3L jug into 4L jug
- Fill 3L jug
- Transfer water from 3L jug to 4L jug until 4L is full - now 2L water left in 3L jug
- Empty 4L jug onto ground
- Empty 3L jug into 4L jug
- There is now 2L water in 4L jug

Contrasts in problem types

- Find a goal state, given constraints on the goal, not interested in sequence of actions
- Any goal state
- e.g., n-queens, crossword puzzles
- Optimal goal state
- e.g., traveling saleswoman problem, set covering problem
- Find a sequence of actions that lead to goal state
- Any sequence
- e.g., sliding puzzle, river crossing puzzle, water jug problem
- Optimal sequence
- e.g., sliding puzzle, ...

Methodology

- Formulate problem solving as search on a graph
- Given a problem to solve:

1. Create a Set of Nodes in a Graph:

- Specify representation of problem as a graph of nodes (states)
- Specify initial and goal states ('distinguished' states)

2. Define Arcs in Graph as Rules/Operators:

- Specify rules or operators (arcs) to move current representation of problem from one state to another
- Also specify cost of each rule/operator

3. Search to Solve Problem:

- Find a path in the graph from the initial state to a goal state

Search graph for River Crossing Puzzle

General search algorithm

$\mathrm{L} \leftarrow$ [start nodes]
while $\mathrm{L} \neq$ empty do
select and remove a node from L, call it p
if p is a goal node, return(success)
generate all successor states of p , and add them to L
end while
return(fail)

FIFO queue gives Breadth-First Search (BFS)
LIFO queue gives Depth-First Search (DFS)
Priority queue gives informed search (greedy, A*)

What to do about repeated states?

0 . Nothing

1. Don't return to a state that you just came from
2. Do not create paths with cycles in them (look at ancestors of a node)
3. Do not generate any state that was ever generated before (keep a closed list using a hash table)

Uninformed search

- Uninformed, or brute-force, search uses no knowledge about a particular problem.
- Works the same for all problems.
- Examples: Breadth-first search, depth-first search.
\square Example: Breadth-first search on the 8-puzzle
∇ Example: Depth-first search on the 8-puzzle

(1) Reference: Breadth-first versus depth-first search

- Complete? (guaranteed to find a solution)
- BFS: yes
- DFS: no (graph may have infinite branches)
- Optimal? (guaranteed to find solution at least depth?)
- BFS: yes (will find shortest)
- DFS: no (may find leftmost, but not shortest)
- $b=$ branching factor, $d=$ depth of solution, $m=$ max depth of tree
- Time: (worst-case analysis)
$-\mathrm{BFS}=\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$
$-\mathrm{DFS}=\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$
- Space:
$-\quad B F S=O\left(b^{d}\right)$ (always storing previous layer - suppose sol'n at bottom)
- $\mathrm{DFS}=\mathrm{O}(\mathrm{bm})$ (all branches from path at each of m levels) (always storing successors)

Improving on brute-force: Iterative-deepening search

- Idea: Combine space efficiency of depth-first search with optimality of breadth-first.
- Make a breadth-first search into interative-deepening search:
- Each iteration is a complete depth-first search with a cut-off (i.e., searches to a limited depth).
- Can throw away previous computation each time and begin again.
- Eventually will find solution if one exists. Solution is guaranteed to have fewest arcs.
- Unnatural versus natural failure:
- Depth limit is increased if DFS was truncated by reaching the depth limit. In this case, the search failed unnaturally.
- The search failed naturally if the search did not prune any paths due to the depth limit. In this case, the program can stop and report no (more) paths.

[1] Reference: DFS with cut-off (Iterative-deepening) versus DFS

- Complete? (guaranteed to find a solution)
- Iterative-deepening: yes
- DFS: no
- Optimal? (guaranteed to find solution at least depth?)
- Iterative-deepening: yes
- DFS: no
- $b=$ branching factor, $d=$ depth of solution, $m=$ max depth of tree
- Time: (worst-case analysis)
- Iterative-deepening $=\mathrm{BFS}=\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$
- Space:
- Iterative-deepening =similar to DFS = O (bd) (always storing previous layer but final layer dominates)
- Iterative=deepening search leads to very practical algorithms

\square Demo: Why computers can beat humans at chess

- Computers can use brute-force search to simulate moves ahead in chess game. Far more lookahead than humans can do!
- Applications: Chess, other alternate-player "zero-sum" games
- "Zero-sum": Add up total player wins, subtract losses, sum is zero.
- From Text 10.3:
- In the case where two agents are competing so that a positive reward for one is a negative reward for the other agent, we have a two-agent zero-sum game. The value of such a game can be characterized by a single number that one agent is trying to maximize and the other agent is trying to minimize. Having a single value for a two-agent zero-sum game leads to a minimax strategy. Each node is either a MAX node, if it is controlled by the agent trying to maximize, or is a MIN node if it is controlled by the agent trying to minimize.
- (continued)

\square

 Demo: Why computers can beat humans at chess (cont)(comtinued)

- Can use clever method (alpha-beta pruning) to reduce the number of nodes that are searched. Stop evaluating a move if at least one possibility has been found that makes this move worse than a previously evaluated move. Thus, whole branches of the search tree can be avoided.
- In best case (best moves always searched first) search goes twice as deep with same amount of computation.
- Can also use heuristics to improve pruning, e.g., examine moves that take pieces before moves that do not.
- Demo: http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
- Better demo but VERY slow:
http://en.wikipedia.org/wiki/Alpha\�\�\�beta_pruning

