
Lecture 2

Uninformed search

" Reference: Preparing for week 1

•  Reading:
–  Chapters 1 and 2.1, 2.2, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5

•  Assignment 1 has now been posted on the course LEARN site
–  Uses MATLAB (a tutorial is included)
–  Companion a1-student-stuff.zip file

Academic AI versus “Game AI”
•  Academic AI is concerned with optimal performance.
•  Game AI has been more about creating a compelling

experience for the player, giving illusion of intelligence.
•  In the past, techniques used for Game AI tended to differ

from Academic AI. Game designers concerned with real-
time constraints, tight schedules, fast advances, …

•  But now Game AI is moving into serious games: health,
business, education, …

•  How will Game AI evolve?
•  Course theme: Enormous potential for improved game AI.

.

" Outline: Search topics

•  Different search algorithms
–  review of breadth-first, depth-first = uninformed (“brute-force”)

search algorithms
–  informed (“heuristic”) search
–  backtracking search for constraint satisfaction problems (CSP)
–  local search

•  There are also different forms of representations
–  variable-based / Constraint Satisfaction Problem representations
–  predicates / STRIPS-rules representations

" Definition: Problem-solving agent

•  Artificial intelligence as problem-solving in a search space:

•  Goal-based agents decide what to do by finding sequences
of actions that lead to desirable states.

" Example: n-queens

Place n-queens on an
n × n board so that no
pair of queens attacks
each other.

" Example: Sliding puzzles

Initial configuration Goal configuration

1

2 3

4

5 6 7

8

1 2 3

6 5

4

7

8

" Example: River crossing puzzle

A father, his two
sons, and a boat are
on one side of a
river. The capacity
of boat is 100 kg.
The father weighs
100 kg and each son
weighs 50 kg. How
can they get across
the river?

" Example: Propositional satisfiability

 Given a formula in propositional logic, determine if the
Boolean variables can be assigned in such a way as to make
the formula true.

 (¬A ∨ B) ∧
 (¬B ∨ ¬C ∨ D) ∧
 (¬D ∨ G ∨ ¬E) ∧
 (¬D ∨ G ∨ ¬F) ∧
 A ∧
 C ∧
 ¬E

" Example: Partition problem

 Given a set of objects with weights, partition the
objects into two sets U and V such that the total
weights of U and V are as close as possible.

Object a b c d e f g h

Weight 5 7 10 10 11 15 16 16

" Example: Travelling saleswoman problem

 Starting at city A, find a route of minimal distance that
visits each of the cities only once and returns to A.

D

A

C

B

E6

10 6

9

13
10 7

7 10

5

" Example: Set covering problem

 Find a minimum size committee of people that together
have the skills necessary to accomplish a task.

 SkillsNeeded = {a, b, c, d, e, f, g, h, i, j, k, l}
 People = {p1, p2, p3, p4, p5, p6}, where

 p1 has skills {a, b, e, f, i, j}
 p2 has skills {f, g, j, k}
 p3 has skills {a, b, c, d}
 p4 has skills {c, e, f, g, h}
 p5 has skills {i, j, k, l}
 p6 has skills {d, h}

" Example: Water jug problem

 We are given two jugs: a 4 liter jug and a 3 liter jug. Neither has any
measuring markers on it. There is a tap that can be used to fill the jugs
with water. How can we get exactly 2 liters of water into the 4 liter jug?

•  SOLUTION:
•  Fill 3L jug
•  Transfer all water in 3L jug into 4L jug
•  Fill 3L jug
•  Transfer water from 3L jug to 4L jug

until 4L is full − now 2L water left in 3L jug
•  Empty 4L jug onto ground
•  Empty 3L jug into 4L jug
•  There is now 2L water in 4L jug

Contrasts in problem types
•  Find a goal state, given constraints on the goal, not

interested in sequence of actions
–  Any goal state

•  e.g., n-queens, crossword puzzles
–  Optimal goal state

•  e.g., traveling saleswoman problem, set covering problem

•  Find a sequence of actions that lead to goal state
–  Any sequence

•  e.g., sliding puzzle, river crossing puzzle, water jug problem
–  Optimal sequence

•  e.g., sliding puzzle, …

Methodology
•  Formulate problem solving as search on a graph
•  Given a problem to solve:
1.  Create a Set of Nodes in a Graph:

–  Specify representation of problem as a graph of nodes (states)
–  Specify initial and goal states (‘distinguished’ states)

2.  Define Arcs in Graph as Rules/Operators:
–  Specify rules or operators (arcs) to move current representation of

problem from one state to another
–  Also specify cost of each rule/operator

3.  Search to Solve Problem:
–  Find a path in the graph from the initial state to a goal state

RRRR

LRRL

RLLL

RLRL

RRLL

RRLR

RLRR LLRL

LRLL

LRRR LLLL

Search graph for River Crossing Puzzle

Initial Goal

Each node indicates the position (Left or Right
bank of the river) of: Father, Son1, Son2, Boat

General search algorithm

 L ← [start nodes]
 while L ≠ empty do
 select and remove a node from L, call it p
 if p is a goal node, return(success)
 generate all successor states of p, and add them to L
 end while
 return(fail)

FIFO queue gives Breadth-First Search (BFS)
LIFO queue gives Depth-First Search (DFS)
Priority queue gives informed search (greedy, A*)

What to do about repeated states?

0. Nothing

1. Don’t return to a state that you just came from

2. Do not create paths with cycles in them (look at
 ancestors of a node)

3. Do not generate any state that was ever generated
 before (keep a closed list using a hash table)

Uninformed search
•  Uninformed, or brute-force, search uses no knowledge

about a particular problem.
•  Works the same for all problems.
•  Examples: Breadth-first search, depth-first search.

" Example: Breadth-first search on the 8-puzzle

" Example: Depth-first search on the 8-puzzle

" Reference: Breadth-first versus depth-first search

•  Complete? (guaranteed to find a solution)
–  BFS: yes
–  DFS: no (graph may have infinite branches)

•  Optimal? (guaranteed to find solution at least depth?)
–  BFS: yes (will find shortest)
–  DFS: no (may find leftmost, but not shortest)

•  b = branching factor, d = depth of solution, m = max depth of tree
•  Time: (worst-case analysis)

–  BFS = O (bd)
–  DFS = O (bm)

•  Space:
–  BFS = O (bd) (always storing previous layer – suppose sol’n at bottom)
–  DFS = O (bm) (all branches from path at each of m levels) (always storing

successors)

Improving on brute-force:
Iterative-deepening search

•  Idea: Combine space efficiency of depth-first search with optimality of
breadth-first.

•  Make a breadth-first search into interative-deepening search:
–  Each iteration is a complete depth-first search with a cut-off (i.e., searches

to a limited depth).
–  Can throw away previous computation each time and begin again.

•  Eventually will find solution if one exists. Solution is guaranteed to
have fewest arcs.

•  Unnatural versus natural failure:
–  Depth limit is increased if DFS was truncated by reaching the depth limit. In

this case, the search failed unnaturally.
–  The search failed naturally if the search did not prune any paths due to the

depth limit. In this case, the program can stop and report no (more) paths.

" Reference: DFS with cut-off (Iterative-deepening) versus DFS

•  Complete? (guaranteed to find a solution)
–  Iterative-deepening: yes
–  DFS: no

•  Optimal? (guaranteed to find solution at least depth?)
–  Iterative-deepening: yes
–  DFS: no

•  b = branching factor, d = depth of solution, m = max depth of tree
•  Time: (worst-case analysis)

–  Iterative-deepening = BFS = O (bd)
•  Space:

–  Iterative-deepening =similar to DFS = O (bd) (always storing previous layer
but final layer dominates)

•  Iterative=deepening search leads to very practical algorithms

" Demo: Why computers can beat humans at chess

•  Computers can use brute-force search to simulate moves ahead in chess
game. Far more lookahead than humans can do!

•  Applications: Chess, other alternate-player “zero-sum” games
–  “Zero-sum”: Add up total player wins, subtract losses, sum is zero.

•  From Text 10.3:
–  In the case where two agents are competing so that a positive reward for one

is a negative reward for the other agent, we have a two-agent zero-sum
game. The value of such a game can be characterized by a single number
that one agent is trying to maximize and the other agent is trying to
minimize. Having a single value for a two-agent zero-sum game leads to a
minimax strategy. Each node is either a MAX node, if it is controlled by
the agent trying to maximize, or is a MIN node if it is controlled by the
agent trying to minimize.

•  (continued)

" Demo: Why computers can beat humans at chess (cont)

(comtinued)
•  Can use clever method (alpha-beta pruning) to reduce the number of

nodes that are searched. Stop evaluating a move if at least one
possibility has been found that makes this move worse than a previously
evaluated move. Thus, whole branches of the search tree can be
avoided.

•  In best case (best moves always searched first) search goes twice as
deep with same amount of computation.

•  Can also use heuristics to improve pruning, e.g., examine moves that
take pieces before moves that do not.

•  Demo: http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
•  Better demo but VERY slow:

 http://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

