Quick! For $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, define what it means for a to be congruent to b modulo n.

We say that a is congruent to b modulo n and write $a \equiv b \pmod{n}$ if and only if $n \mid (a-b)$. This is equivalent to saying there exists an integer k such that a-b=kn or a=b+kn.

Congruence is an Equivalence Relation (CER)

Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then

- 1. (Reflexivity) $a \equiv a \pmod{n}$.
- 2. (Symmetry) $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$.
- 3. (Transitivity) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$.

Proofs:

- 1. Since $n \mid 0 = (a a)$, we have that $a \equiv a \pmod{n}$.
- 2. Since $n \mid (a b)$, there exists an integer k such that nk = (a b). This implies that n(-k) = b a and hence $n \mid (b a)$ giving $b \equiv a \pmod{n}$.
- 3. Since $n \mid (a-b)$ and $n \mid (b-c)$, by Divisibility of Integer Combinations, $n \mid ((a-b)+(b-c))$. Thus $n \mid (a-c)$ and hence $a \equiv c \pmod{n}$

Without a calculator, is 167 = 2015 mod! Soln: 2015 = 3 mod 4 3: 4/2012=2015-3 167=3 med 4: 4/164=167-3 By symmetry 3=2015 md4 By transtrity 167=2015 med4. 10 Alt Sol'n: 15 Does H 2015-167=1848

Properties of Congruence (PC) Let $a, a', b, b' \in \mathbb{Z}$. If $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then

- 1. $a + b \equiv a' + b' \pmod{m}$
- $2. \ a b \equiv a' b' \pmod{m}$
- 3. $ab \equiv a'b' \pmod{m}$

Proofs:

- 1. Since $m \mid (a-a')$ and $n \mid (b-b')$, we have by Divisibility of Integer Combinations $m \mid (a-a'+(b-b'))$. Hence $m \mid (a+b-(a'+b'))$ and so $a+b \equiv a'+b' \pmod{m}$.
- 2. Since $m \mid (a a')$ and $n \mid (b b')$, we have by Divisibility of Integer Combinations $m \mid (a a' (b b'))$. Hence $m \mid (a b (a' b'))$ and so $a b \equiv a' b'$ (mod m).
- 3. Since $m \mid (a-a')$ and $n \mid (b-b')$, we have by Divisibility of Integer Combinations $m \mid ((a-a')b+(b-b')a')$. Hence $m \mid ab-a'b'$ and so $ab \equiv a'b' \pmod{m}$.

Corollary If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for $k \in \mathbb{N}$.

Example: Since $2 \equiv 6 \mod 4$, we have that $2^2 \equiv 6^2 \mod 4$, that is, $4 \equiv 36 \mod 4$.

Is
$$5^{9}+62^{2000}-14$$
 divisible by 7^{7} .

Sol'n': Reduce mod 7 . By (PC)

 $5^{9}+62^{2000}-14 = (-2)^{9}+(-1)^{2000}$
 $= -2^{9}+1$ mod 7
 $= -(8)^{3}+1$ mod 7
 $= -(1)^{3}+1$ mod 7
 $= 0$ mod 7