Elasticity & Discretization

Jan 11, 2016

Logistics

- I've created and posted the schedule based on sign-ups.
- 1st review due Sunday at 5pm; pick one of the 4 rigid body papers from the schedule. Submit your review to the LEARN DropBox.
- Other?

Elasticity

Elasticity

An elastic object is one that, when deformed, seeks to return to its original reference or rest configuration.

Previously: we saw discrete mass/spring models. Today: more principled *continuum mechanics* approach.

Generalizes 1D elasticity (springs) to 3D objects.

Will loosely follow Sifakis' SIGGRAPH course: http://run.usc.edu/femdefo/sifakis-courseNotes-TheoryAndDiscretization.pdf

Continuum Mechanics

View the material under consideration as a *continuous* mass, rather than a set of *discrete* particles/atoms.

V.S.

Useful for both solids and fluids.

Not always applicable: e.g., at small scales, during some kinds of fracture, for objects that are composed of large discrete elements, etc.

Recall: The linear spring force is dictated by displacement, $\Delta x = L - L_0$, away from rest length (Hooke's law):

$$F = -k\Delta x.$$

This force is related to the spring's potential energy: $U = \frac{1}{2}k(\Delta x)^{2}.$

The force acts to drive potential energy towards zero, by reducing the displacement, Δx .

Conservative Forces

The spring force is an example of a **conservative force** – it depends only on the *current state* (i.e., it is "path-independent").

In this case, the force F is given by the gradient of a potential energy U: $F = -\nabla U$.

For our continuum elastic material, we seek a potential energy that is zero when our 3D object is undeformed.

Elasticity – 3D

How can we generalize the spring to (threedimensional) *volumes* of material?

First, we need a way to describe 3D deformations.

Deformation Map

A function $\vec{\phi}$ that maps points from the reference configuration (\vec{X}) to current position in world space (\vec{x}).

$$\vec{\phi} \colon \mathbb{R}^3 \to \mathbb{R}^3$$

Purpose is similar to the state/transform of a rigid body. However, each (infinitesimal) point in the body can now have a *different* transformation.

Deformations

The deformation map says where points in the material have moved to.

However, to determine forces due to deformation, we need to know how nearby points have moved *relative to one another*.

The tool we need is the *deformation gradient*.

configuration:

Deformation Gradient

For some offset position from \vec{X} , say $\vec{X} + \vec{dX}$, what is the corresponding world position?

$$\vec{x} + \vec{dx} = \vec{\phi}(\vec{X} + \vec{dX}) \approx \vec{\phi}(\vec{X}) + \frac{\partial \vec{\phi}}{\partial \vec{X}} \vec{dX} = \vec{x} + \vec{F} \vec{dX}$$

Taylor expand...
Deformation gradient, $\vec{F} = \frac{\partial \vec{\phi}}{\partial \vec{X}}$, describes how particle positions have
changed relative to one another.

rest space

Deformation Gradient

It is given by the 3×3 matrix (tensor):

$$\boldsymbol{F} = \frac{\partial \vec{\phi}}{\partial \vec{X}} = \begin{pmatrix} \frac{\partial \phi_1}{\partial X_1} & \frac{\partial \phi_1}{\partial X_2} & \frac{\partial \phi_1}{\partial X_3} \\ \frac{\partial \phi_2}{\partial X_1} & \frac{\partial \phi_2}{\partial X_2} & \frac{\partial \phi_2}{\partial X_3} \\ \frac{\partial \phi_3}{\partial X_1} & \frac{\partial \phi_3}{\partial X_2} & \frac{\partial \phi_3}{\partial X_3} \end{pmatrix}$$

Deformation Gradient: $F = \frac{\partial \vec{\phi}}{\partial \vec{x}}$

Examples of simple deformations: Translation: $\vec{x} = \vec{\phi}(\vec{X}) = \vec{t} + \vec{X}$, implies F = I.

• World pos \vec{x} is rest pos \vec{X} plus a translation, \vec{t} . Zero *relative* motion between points.

Uniform Scaling: $x = \phi(X) = sX$ implies F = sI.

• World pos \vec{x} is rest pos \vec{X} times a constant, s.

Rotation: $x = \phi(X) = RX$ implies F = R.

• World pos \vec{x} is rest pos \vec{X} rotated by matrix R.

One Possible Potential Energy

What if we use *F* directly to construct a potential energy?

$$J(\boldsymbol{F}) = \frac{k}{2} \|\boldsymbol{F} - I\|_{F}^{2}$$

Frobenius norm, $\|\boldsymbol{A}\|_{F} = \sqrt{\sum_{i} \sum_{j} a_{i,j}^{2}}$

Resulting forces $(-\nabla U)$ will drive **F** towards *I*, i.e., a deformation that is (just) a translation.

What's wrong with this?

Strain Measures

Want a deformation measure that *ignores* rotation (and translation), but captures other deformations.

Can we extract this from **F**?

Recall: Rotation matrices are *orthogonal*, $R^T R = I$.

A useful measure is the Green/Lagrange strain tensor, $E = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - I)$.

Like *F*, but ignores translation *and* rotation, while retaining shear/stretch/compression info.

Strain Measures

But, Green strain is nonlinear (quadratic), so more costly.

For *small* deformations, can use small/infinitesimal/Cauchy strain: $\epsilon = \frac{1}{2}(\mathbf{F}^T + \mathbf{F}) - I$

(A linearization of Green strain.)

Many other strain tensors exist (and these two have many names)...

Big Picture – So Far

- Deformation map ϕ describes map from rest to world state.
- Deformation gradient $F = \frac{\partial \vec{\phi}}{\partial \vec{x}}$ describes deformation (minus translation).
- Strains ϵ or E describe deformation (minus rotation).
- Then what...

Remaining questions:

- What are the equations of motion ("F = ma") for our continuous blob of material?
- How to get from strains to forces?

Equations of Motion

Consider F = ma for a small, continuous "blob" of material. $\int_{\Omega} F_{body} dX + \int_{\partial \Omega} T dS = \int_{\Omega} \rho \ddot{x} dX$

 F_{body} : "body" forces that act throughout the material (e.g. gravity, magnetism, etc.). i.e., force per unit *volume* (i.e., force density).

T: tractions, i.e., force per unit *area* acting on a surface.

 ρ : density.

 Ω is the material region being considered, with surface/boundary $\partial \Omega$.

Traction

Traction *T* is a force (vector) per unit area on a small piece of surface.

$$\vec{T}(\vec{X},\vec{n}) = \lim_{A \to 0} \frac{F}{A}$$

Cauchy's postulate:

Traction is a function of position \vec{X} and normal \vec{n} . i.e., doesn't depend on curvature, area or other properties.

Consists of normal/pressure component along \vec{n} , and tangential/shear components perpendicular to it.

Traction

Consider the *internal* traction on any slice through a volume of material.

This describes the forces acting on this plane between the two "sides".

Note:
$$T(x, n) = -T(x, -n)$$
 (by Newton's 3rd).

Traction

We can characterize internal forces by considering tractions on 3 perpendicular slices (i.e., normals along x, y, z, directions).

3 components per traction along 3 axes gives us 9 components.

This gives us the Cauchy stress tensor, σ .

Traction on any plane can be recovered via $T = \sigma n$

where *n* is the normal of the plane.

Stress

The 3×3 stress tensor describes all the forces acting within a material (at a given point).

$$\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$

 σ can be shown to be symmetric, i.e., $\sigma_{yx} = \sigma_{xy}$, etc. (from conservation of angular momentum.)

Stress – Physical meaning?

Diagonal components correspond to compression/extension (normal) forces.

Off-diagonal components correspond to shear forces.

Equations of motion

$$\int_{\Omega} F_{body} dX + \int_{\partial \Omega} T dS = \int_{\Omega} \rho \ddot{x} dX$$

• Plug in
$$T = \sigma n$$
...

$$\int_{\Omega} F_{body} dX + \int_{\partial \Omega} \sigma n dS = \int_{\Omega} \rho \ddot{x} dX$$

• Integrate by parts (divergence theorem) to eliminate surface integral:

$$\int_{\Omega} F_{body} dX + \int_{\Omega} \nabla \cdot \sigma dX = \int_{\Omega} \rho \ddot{x} dX$$

In limit of small Ω , $F_{body} + \nabla \cdot \sigma = \rho \ddot{x}$, for every infinitesimal point.

Big Picture – So Far

- Deformation map ϕ describes map from rest to world state
- Deformation gradient *F* = describes deformations (minus translation)

Last missing step!

- Strains ϵ or E describe deformation (minus rotation) -
- Stress σ describes forces in material
- PDE $F_{body} + \nabla \cdot \sigma = \rho \ddot{x}$ describes how to apply stress to get motion
- (Later, will discretize the PDE to get discrete equations to solve.)

Constitutive models

Strain E/ ϵ describes deformations of a body. Stress σ describes (resulting) forces within a body.

Constitutive models dictate the stress-strain *relationship* in a material.

i.e., Given some deformation, what stresses (forces) does it induce?

e.g., Explains why rubber responds differently than concrete.

Linear Elasticity - simplest isotropic model

Hooke's law in 3D, for small strain, ϵ . Potential Energy:

$$U(F) = \mu\epsilon \epsilon + \frac{\lambda}{2} \operatorname{tr}^2(\epsilon)$$

Stress:

$$\sigma = 2\mu\epsilon + \lambda \mathrm{tr}(\epsilon)I$$

 μ , λ are the Lamé parameters, loosely analogous to 1D spring stiffness k. "tr" is the trace operator (sum of diagonals of tensor/matrix) ":" is a tensor double dot product, where $A: B = tr(A^T B)$

(i.e., behaves the same in all directions.)

Linear Elasticity

Derives from the simplest possible linear relationship between σ and ϵ .

- Flatten the 3x3 tensors ϵ and σ into vectors.
- Isotropy and symmetry of ϵ/σ reduce 81 coeffs down to 2 independent parameters (e.g., μ and λ).

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yx} \\ \sigma_{yx} \\ \sigma_{yy} \\ \sigma_{yy} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{zy} \\ \sigma_{zz} \end{bmatrix} = \begin{bmatrix} 9x9 \ coef \ ficient \ matrix \end{bmatrix} \begin{bmatrix} \epsilon_{xx} \\ \epsilon_{xy} \\ \epsilon_{yy} \\ \epsilon_{yz} \\ \epsilon_{yz} \\ \epsilon_{zx} \\ \epsilon_{zy} \\ \epsilon_{zz} \end{bmatrix}$$

Other Elastic moduli

A more common/intuitive (but interconvertible) parameter pair is *Poisson's ratio, v*, and *Young's modulus, E, or Y.* (Careful overloading E).

$$\mu = \frac{Y}{2(1+\nu)}$$

and...

$$\lambda = \frac{Y\nu}{(1+\nu)(1-2\nu)}$$

Elastic Moduli – Young's modulus

Young's modulus:

- Ratio of stress-to-strain along an axis.
- Should be consistent with linear spring.

Elastic Moduli – Poisson's ratio

- Poisson's ratio is negative ratio of transverse to axial strain
 - If stretched in one direction, how much does it compress in the others?
 - Expresses tendency to preserve volume.
 - Lies in range [-1, 0.5].
 - 0.5 = incompressible (e.g., rubber)
 - 0 = no compression (e.g., cork)
 - < 0 is possible, though weird...
 - Called *auxetic* materials.

The "linear" in linear elasticity

- Describes the stress-strain relationship.
- But, strain itself could still be either linear (small strain, ϵ) or nonlinear (Green strain, E) in the deformation.

Use E instead of ϵ with the same equations gives:

$$U(F) = \mu E : E + \frac{\lambda}{2} \operatorname{tr}^2(E)$$

Better for larger deformations/rotations. (AKA St. Venant Kirchhoff model.)

Other common models

- Corotational linear elasticity:
 - Try to pre-factor out the rotational part of strain in a different way; treat the remainder with linear elasticity.
 - We'll see this idea in the "Interactive Virtual Materials" paper.
- Neo-Hookean elasticity:
 - St.V-K breaks down under large compression (stops resisting).
 - Neo-Hookean is a nonlinear model that corrects this.

A Taste of Common Discretization Methods

Discretization

Need to turn our continuous model describing infinitesimal points...

$$F_{body} + \nabla \cdot \sigma = \rho \ddot{x}$$

...into a discrete model that approximates it (and can be computed!)

Standard choices: Finite difference (FDM), finite volume (FVM), and finite element methods (FEM).

I'll give a brief flavour, but... there's a vast literature & theory. (See e.g. Numerical PDE course, CS778.)

Finite differences

Dice the material/domain into a grid of points holding the relevant data.

Replace all (continuous, spatial) derivatives with (discrete) finite difference approximations.

e.g.,

$$\frac{dy}{dx} \approx \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

Time Discretization

- Notice: Time integration schemes (FE, RK2, BE, etc.) are discretizations of time derivatives, along the 1D time axis.
- E.g., Forward Euler uses a 1st order (one-sided) finite difference: $\frac{dx}{dt} \approx \frac{x_{i+1} - x_i}{\Delta t}$
- We distinguish time discretization and spatial discretization, and focus on the latter now.

e.g. 1D Heat equation

Continuous equation:

$$\frac{\partial \phi}{\partial t} - \alpha \frac{\partial^2 \phi}{\partial x^2} = 0$$

Discretize time derivative (w/ forward Euler): $\phi_{t+\Delta t} = \phi_t + \Delta t \alpha \frac{\partial^2 \phi_t}{\partial x^2}$

Discretize spatial derivatives with F.D.:

$$\phi_{t+\Delta t} = \phi_t + \Delta t \alpha \frac{\left(\frac{\phi_t^{i+1} - \phi_t^i}{\Delta x} - \frac{\phi_t^i - \phi_t^{i-1}}{\Delta x}\right)}{\Delta x}$$

e.g. 1D Heat(diffusion) equation

Finite differences

Very common for fluids... less so for solids.

Few graphics papers use FDM for solids: e.g., "An efficient multigrid method for the simulation of high-resolution elastic solids"

Advantages: often simpler to implement, nice grid structure offers various optimizations, cache coherent memory accesses...

Disadvantages: trickier for irregular shapes and boundaries not aligned with axes

Finite volume

- Divide the physical domain up into a set of non-overlapping "control volumes."
- Could be irregular, tetrahedra, hexahedra, general polyhedral, etc.
- Approximate the *integrated/average* value of quantities within the cell (rather than point values like F.D.).
- Consider the exchange of data between adjacent cells.

Figure from the *DistMesh* gallery: http://persson.berkeley.edu/distmesh/gallery_images.html

Finite volume – Conservation laws

Useful for conserved quantities; ensures the exact "flow" leaving one cell enters the next.

• E.g. mass, heat, momentum, etc.

Applies to equations in "conservation form"

$$\frac{d\phi}{dt} + \nabla \cdot f(\phi) = 0$$

Particularly common for fluids.

Reminder: Divergence operator, ∇ ·

For vector field $\vec{u}(\vec{x})$, divergence is a signed scalar measuring net flow out of a point.

i.e. to what degree that point is a source (v.s. a sink) for the vector field.

$$\nabla \cdot \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

Flowing out: positive

Flowing in: negative

Neither: zero ("divergence-free")

[Tong et al. 2003]

e.g. 1D Heat equation

Instead of differential form, use an *integral* form of the governing equations over a cell.

$$\left(\frac{d}{dt}\int\phi\right) - \int\frac{\partial}{\partial x}\left(\alpha\frac{\partial\phi}{\partial x}\right) = 0$$

The amount of a quantity (ϕ) in a cell changes due to the amount flowing across its boundaries (sides).

e.g. 1D Heat equation

$$\left(\frac{d}{dt}\int_{a}^{b}\phi\,dx\right) - \int_{a}^{b}\frac{\partial}{\partial x}\left(\alpha\frac{\partial\phi}{\partial x}\right)dx = 0 \quad \rightarrow _{By\,FTOC}\left(\frac{d}{dt}\int_{a}^{b}\phi\,dx\right) - \left[\alpha\frac{\partial\phi}{\partial x}\right]_{a}^{b} = 0$$

We estimate the difference in "flux" $\alpha \frac{\partial \phi}{\partial x}$ at the right and left side of the cell. This tells us how much the total ϕ in the cell, $\int_a^b \phi \, dx$, changes per unit time.

Finite volume – Equations of motion

Return to the *integral* form of our equations of motion...

$$\int_{\Omega} F_{body} dX + \int_{\Omega} \nabla \cdot \sigma dX = \int_{\Omega} \rho \ddot{x} dX$$

Convert divergence term into *surface* integrals by divergence th'm.

e.g.
$$\int_{\Omega} \nabla \cdot \sigma dX = \int_{\partial \Omega} \sigma \cdot n \, dS$$
$$\approx \sum_{faces f} (\sigma_f \cdot n_f) L_f$$

Integrate remaining terms to get volume-averaged quantities per cell.

Finite volume – Elasticity

We'll see details of FV applied to elastic objects in the paper: "Finite Volume Methods for the Simulation of Skeletal Muscle"

Finite element methods

Core idea:

We can't really solve the *infinite dimensional*, continuous problem describing all points in the material!

Instead find a solution that we *can* represent, in some *finite* dimensional subspace.

Concretely:

- 1. choose an approximate representation of continuous functions on a discrete mesh.
- 2. find the "best" solution possible among all functions that representation can describe.

Finite elements – basis functions

In 1D, consider the space of functions representable by (piecewise) linear interpolation on a set of grid points.

Just a linear combination of scaled and translated "hat" functions at each gridpoint, called a *basis function*.

Many others bases are possible (e.g. higher order polynomials).

Then, any function *u* in this space can be described by:

$$u(x) = \sum_{k=1}^{\infty} u_k v_k(x)$$

where u_i are the coefficients, and $v_k(x)$ are the basis functions, ("hats" in our case.)

To find a solution to a problem, we want to find the discrete coefficients, u_k .

The approximated continuous solution is recovered by interpolation.

Higher dimensional functions

This generalizes to higher dimensions, where our scalar function u depends on multiple variables (e.g. x, y, z)

e.g., two dimensions:

2D mesh with numbered nodes.

A single linear "hat" basis function in 2D.

Take a 1D model problem: $\frac{d^2u}{dx^2} = f$ on [0,1], with u(0) = 0, u(1) = 0. For given f, find u.

For a proper solution, it will also be true that

$$\int \frac{d^2 u}{dx^2} v dx = \int f v dx$$

for all "test functions" v (that are smooth and satisfy the BC).

We require this, rather than pointwise satisfaction of original equation.

Integrate LHS by parts (with zero boundaries) to get:

$$\int \frac{du}{dx} \frac{dv}{dx} dx = \int f v \, dx$$

This is called the *weak form* of the PDE.

Now, we will replace u, f, and v with our space of discrete, piecewise linear functions.

Specifically, we insert:

- $u(x) = \sum_{k=1}^{n} u_k v_k(x)$
- $f(x) = \sum_{k=1}^{n} f_k v_k(x)$
- $v(x) = v_j(x)$ for j = 1 to n (i.e. a set of functions spanning the space)

From our (linear/hat) basis functions, we can work out derivatives of u(x) and v(x). We can also *exactly* find the following inner products:

$$\langle v_j, v_k \rangle = \int v_j v_k \, dx$$

 $\phi(v_j v_k) = \int \frac{dv_j}{dx} \frac{dv_k}{dx} \, dx$

After plugging into $\int \frac{du}{dx} \frac{dv}{dx} = \int fv$ and rearranging, this yields a set of *n* discrete equations of the form:

Final system

Letting **u** be the vector of unknown coefficients, and **b** the RHS vector, this becomes a matrix equation:

$L\mathbf{u} = \mathbf{b}$

where the entries of L are just the $\phi(v_j, v_k)$'s we defined.

See paper "Graphical Modeling and Animation of Brittle Fracture" for details of an early application of FEM to elasticity in graphics.

Example – FEM with fracture

"Graphical modeling and animation of brittle fracture", O'Brien et al. 1999

FD/FV/FE elasticity v.s. mass-spring

- In all cases (w/ implicit time integration) we get a possibly nonlinear system of equations to solve for data stored on a discrete mesh/grid.
- However, for FD/FV/FE:
 - we can use physically meaningful/measurable parameters.
 - as the mesh resolution is increased, we approach true/real analytical solutions.
 - behaviour becomes independent of the mesh structure (under refinement!)
 - E.g. eliminates bias due to triangle edge directions. With springs, the mesh structures below behave differently regardless of how fine the mesh is.

- The equations of elasticity give us a more consistent and principled approach to evolving continuous deformable bodies.
- The most common approaches to **discretizing** the resulting PDE are the finite difference, volume, and element methods.