
Assignment 2. Distinguish Natural and Random Peptides
Due date (Feb. 18, 2019)

Write	a	program	to	tell	whether	a	peptide	sequence	is	natural	or	not.	We	say	a	
peptide	is	“natural”	if	it	is	a	substring	of	a	protein	produced	by	a	real	biology.		

Command Line:
We	will	run	your	program	with	“program	inputFile”.	Your	program	will	output	to	
the	standard	output.	
	
Input:
A	single	text	file	with	a	list	of	peptides	in	it,	each	line	contains	one	peptide’s	
sequence.	The	peptide’s	sequence	contains	only	the	20	common	amino	acids.	Each	
peptide	takes	a	single	line.	The	length	of	each	peptide	is	uniformly	randomly	
distributed	between	20	and	40	(inclusive).	For	example:	

LLLSLYYPNDRKLLDYKE
VSRVSSDADPAGGWCRKWYSAHRGPDQDAALG

Output:
Each	line	of	the	output	corresponds	to	a	peptide	in	the	input	file,	in	the	same	order.	
Each	line	contains	three	columns:	score1,	score2,	and	the	original	peptide	sequence.	
The	three	columns	are	separated	with	one	or	more	whitespace	characters.	

The	scores	should	indicate	the	confidence	your	program	think	the	peptide	is	natural.	
A	higher	score	indicates	a	higher	confidence.	The	method	calculating	score1	is	
provided	to	you	later	in	this	document.	You	are	responsible	to	develop	the	method	
to	calculate	score2.	For	example,	the	following	illustrates	the	format	of	the	output	
for	the	above	input	(the	actual	numbers	given	here	are	only	for	illustration	purpose)	

1.73 2.3 LLLSLYYPNDRKLLDYKE
0.59 -1.2 VSRVSSDADPAGGWCRKWYSAHRGPDQDAALG

Test Cases:
Each	test	file	will	contain	a	mixture	of	equal	number	of	natural	and	random	peptide	
sequences.	The	natural	peptides	will	be	sampled	from	a	real	protein	sequence	
database.	We	will	use	the	uniprot/swissprot	protein	sequence	database	to	sample	
natural	peptides.	The	resource	is	downloadable	at	
http://www.uniprot.org/downloads.	The	“Reviewed	(Swiss-Prot)”	database	is	the	
one.	The	fasta	file	format	is	recommended	for	your	development	purpose	(see	
screenshot).	
	

	
	
Note	that	the	annotation	line	(starting	with	a	‘>’	sign)	of	each	protein	in	the	fasta	file	
is	irrelevant	for	our	purpose	and	should	be	discarded.	Also,	there	may	be	letters	in	
the	sequences	that	do	not	code	one	of	the	20	common	amino	acids.	Our	test	cases	
will	not	include	those	peptides.	
	
The	random	peptides	will	be	obtained	by	randomly	shuffling	the	amino	acids	within	
the	natural	peptides.		Notice	that	the	random	and	natural	peptides	in	a	test	file	may	
be	sampled	independently	to	each	other.	
	
Performance Evaluation:
	
The	prediction	accuracy	of	a	score	function	is	calculated	as	follows.	Suppose	a	test	
file	contains	N	natural	and	N	random	peptides.	First,	your	results	are	sorted	
according	to	the	descending	order	of	the	score.	Then	the	first	N	results	with	the	
highest	scores	are	taken.		
	

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑎𝑡𝑢𝑟𝑎𝑙	𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠	𝑖𝑛	𝑡𝑜𝑝	𝑁

𝑁 	
	
Marking	will	be	based	on	this	accuracy	and	then	normalized	to	fit	a	nice	grade	
distribution	for	the	whole	class.	
	
Scoring Functions:

• The	first	score	(score1)	should	be	the	following	k-mer	frequency	score.	For	
each	k-mer,	let	𝑝	be	its	frequency	in	the	real	peptides	and	𝑞	be	its	frequency	
in	random	peptides,	respectively.	Then	assign	a	score		log!

"
#
	to	it	and	record	

it	in	a	parameter	file	or	your	program.	A	peptide’s	score	is	the	sum	of	its	k-
mer	scores.	Use	k=3.	You	need	to	estimate	these	frequencies	by	yourself	and	
find	a	way	to	embed	the	information	in	your	program.	
	

• The	second	score	(score2)	is	your	own.	If	you	want	to	use	a	machine	learning	
package,	you	must	check	with	the	TA	to	ensure	the	particular	package	is	
available	under	the	marking	environment;	

	

What	to	Submit:	
(1) The	source	code.	
(2) A	pdf	file	contains	(a)	a	brief	description	of	your	scoring	function,	(b)	a	

description	of	a	testing	data	you	used	to	test	your	program,	and	(c)	the	
accuracies	of	the	two	score	functions	according	to	your	test.		

Additional Information:

1. You	may	need	to	use	additional	parameter	files	(to	store	the	k-mer	
frequency,	for	example)	for	your	program.	But	your	total	submission	size	
should	not	exceed	2M	bytes.	Being	larger	than	2M	bytes	may	lead	to	penalty	
or	rejection	of	the	submission.	

2. To	save	size,	you	are	allowed	to	zip	your	parameter	file	and	expand	it	in	
memory	in	your	program	while	loading.	

3. Yes,	you	are	allowed	to	copy	score1	to	score2	-	if	you	choose	not	to	develop	a	
better	score	function.	You	are	also	allowed	to	use	score1	as	a	feature	in	
score2.	

	
	
	

