@Q,(/)W Weyoe Cort

T m)
T® @t
SW COVT TN

QWN}&G @/
CTES el

Skew Algorithm For Sutfix Sorting

* LetSy, Sy, S, ..., S, be all the n suffixes. §; starts at i-th position.

* Skew algorithm uses divide and conquer. But it divides the problem
into unequally sized parts.

* Two sets SAY= {S.:1 = 0 mod 3} and SA*={S.:i=1 or 2 mod 3}.

28

Skew Algorithm

Hxample

< A

* Example: mississippi

SAY

P11

SAlZ

mississippl 1ss1sslippl
s1ssippl 1ssi1ppl
sippil 1ppl

1

Ss1Ss1ppil
Ss1ppil
ppi

(T(@):(f(%éﬁ)ﬁﬁiﬁﬂ
= O(") .

29

Skew Algorithm Example

* Example: mississippi

SAY

mlississippl
s1ssSippl
s1ppl

Pl

F@mmwhf)j

2-Mmey —) Y

1ssissippl

1S81ppP1o0)— Ss1ppl
1ppLye b= ppl
1 -

Jov i % OM @ OAY et

grmgv

Q-%(@f% —

29

Skew Algorithm Example

* Example: mississippi

mississippi— \:@ississippi ssissippi
sissippi s " [Clissippi ssippi
sippl— - [f)1ppl ppil
pi > BGE
\ me & =f
@W%Y“% 10 WJA\% é@ﬂ“ﬁ J Loy
[A] T

29

Skew Algorithm Example
* Example: mississippi
12
mississippl 1ss1sslippl Ss1Ss1ppil
s1ssippl 1ssi1ppl Ss1ppil
sippil 1ppil ppi
Pl 1 "t %w M/)?é%
0 (
agSh vebe th i) L
i R 4 _ _ UY\//
\/ O}) b)) 1G) S A

DN~

WD) €§A btg} SA

29

Skew Algorithm For Sutfix Sorting

* 1. Sort SA!? recursively.
e 2.Sort SA in linear time.

* 3. Merge sort SAY and SA'? in linear time.

31

How to sort SA!“ recursively

mississippi
QA2

mod 1 mod 2
1ss%ss%pp? ssissippi
issippil . .
. . SS1Pp1l
ippl .
Ppi ppi

e We need to know the order of these suffixes.
* In order to solve it recursively, we need to reduce the
problem to a smaller suffix sorting problem.

32

Reduction to a smaller suffix sorting problem

SAlZ modl mod2
158}ss%pp%00 ssissippil
issippi00 . .
L ssippi
ippi00 oo
100
iss|liss|lippli00 ssijlssijppi

* Pad 0 to make their length multiple of 3. Then treat each string as a
string of “triplets”. Each subset is the suffixes of the “triplet string”.

* We connect the two “triplet strings” together to make a longer string,
We put the one with padding at the left.

i1ss/liss/lipp/liOOjssijfssilpp il

33

Reduction

SAl2 mod 1 mod 2
1ssissippi00 . . .
SoEoEE ssissippi
issippi00 . .
. . SS1pPp1l
ippi00 opi
100
1ssissippi00
Now chef:k all the.t sufﬁx.es of the concatenated 4 o 4 ippi00
triplet string. Their relative order can be used . {00
to build the relative order of SA'? easily. lpp%
We are almost there, except that keeping 100 . : .
tripling the size (number of bytes) of the SS1SS1ppl
“character” 1s a problem. ssippi

ppl

34

Renaming

We solve the unlimited expansion problem by a trick called renaming. It maps each
unique triplet to a single unique integer.

To rename, we first sort the triplets, and then assign integer values sequentially to
unique triplets. Sorting triplets can be done in linear time by radix sort.
This ensures

* The max value 1s always bounded by the length of array.

* 'The suffix order is unchanged.

100 -> O 1ssdissippi00

ipp —> 1 4:&

1ss —> 2

ppi -> 3 2 2 1 0 4 4 3
ssi1 —> 4

Renaming Example

100 -> O
ipp —> 1
1ss —> 2
ppli —-> 3
ssi1 —> 4
1ssissippi00
1ssippil0
1ppi00
i00

1ssissippi00

ssissippil
ssippi
ppi

=

o o o O

o DD D

T T A | N A

w w w w w w Ww

36

Recursion

After renaming, we just suffix sort the new integer string, which has length
approximately 2n/3. This can be done by recursion.

The time complexity of renaming 1s dominated by sorting the triplets. This can be
solved in linear time with radix sort.

37

Radix Sort

Radix Sort: Multiple passes. Each pass stable sorts according to one digit. From
the least to the most significant digit.

original: its, iss, 1pp, abc, att
passl: abc, ipp, its, 1ss, att
pass2: abc, ipp, 1ss, its, att
pass3: abc, att, ipp, 1ss, 1ts

Radix sorting requires O(k) space, where k is the size of the alphabet.

Fach pass takes linear time. And only 3 passes needed in our case. So it 1s linear
time.

38

Recap Sort S'* recursively

|

01234567890 position
mississipp il input s
suffixes mod 1 suffixes mod 2
isslisslippliOO[ssif[ssilppi| tiples
33 2 1 5 54 triple names
'B332155a s12

1'ecu1'sive\L call

1. Padding and concatenation to get string of triplets.

2. Radix sort the triplets to get an ID (name) of each triple.

3. Recursion to get the suffix order on the string of IDs.

39

Skew Algorithm For Sutfix Sorting

We assume SA!2 is sorted already, and learn the
other two steps first.

1. Sort SA!? recursively.
2. Sort SAY in linear time.

3. Merge sort SAY and SA'? in linear time.

40

Sort SV in linear time

* 5= s[1] Sy

* Forall §;in SAY, S, has been sorted already. Use s[i] to do another
pass of radix sorting will give us the right order of SAY. This takes

linear time.
Sorted SA12 0123456789(1)
mississippil

10: 1
4: 1ssippil To sort SAO
l: 1ssissippl -
7: ippi O: mississippil
8: ppi 3: sissippl
5: ssippil gf Sibpl
2: ssissippi - P1

41

Skew Algorithm For Sutfix Sorting

* 1. Sort SA'? recursively.
e 2.Sort SA in linear time.

* 3. Merge sort SAY and SA'? in linear time.

42

Merge

Sorted SA12 Sorted SAQ
10: 1
4: issippi
LSsippl o 0: mississippi
l: 1ssissippil 9: pi
7] ' .
g . 1p§1 6: sippl
- PRI 3: sissippil
O: SsS1ppl

2: SsS1ssippl

* Would be a simple merge if comparison of two takes constant time.
* 'Trouble is when two suffices share a long prefix, which takes more
than constant time to compare.

E.g. what if S5 = aaaa... and S6=aaaa...

Merge SY and S'*

Merging only requires to compare a suffix §; with j mod 3 = 0 with a
suffix S. with 1 mod 3 = 0. :
Case 1: If imod 3 = 1, we write §; as (s[i], Si1) and §; as (s[j], Si1y).

* Since (i +1) mod 3 =2 and (j + 1) mod 3 = 1, the relative order of §;,; and S;,
can be determinded from their position in SA!2.

Case 2: If i mod 3 = 2, we compare the triples (s[1], s[i + 1], S;,,) and
(bl sb + 11, S+2)-

44

Recap

0123456789(1) position
mississippil input s
suffixes mod 1 suffixes mod 2
isslisslipplioOlssilssilppi|l wuiples
33 2 1 5 54 triple names
'B321554] g12

recursive | call

[3210654] SAl2

......... b

4 3 2 1 71 6 5 SA

sorted suffixes mod O sorted suffixes mod 1, 2,SA12

10 |9]l6 |3 |]10][7 [4]1 [8 |5] 2]positionins

merge

(1017 [4 [1 [0 [9 [8 [6 [3 [5 [2 | suffixarray SA

45

C codes

* 50 lines of C++ codes were given in J.C.M. Baeten et al. (Eds.): ICALP
2003, LNCS 2719, pp. 943-955, 2003.

* http://www.mpi-inf.mpg.de/~sanders/programs/suffix/

46

