
Review Merge sort

Divide . Tln)

⑤ ④ = 2.Tiny

sort
t

sort .
1- n

Qin I

② Tcu) _=O(newsy

28

• Let S0, S1, S2, …, Sn-1 be all the n suffixes. Si starts at i-th position.
• Skew algorithm uses divide and conquer. But it divides the problem

into unequally sized parts.
• Two sets SA0= {Si : i = 0 mod 3} and SA12={Si: i=1 or 2 mod 3}.

Skew Algorithm For Suffix Sorting

29

Skew Algorithm Example
• Example: mississippi

mississippi
sissippi

sippi
pi

SA0

ississippi
issippi

ippi
i

SA12

ssissippi
ssippi

ppi

0123456789100

SA
'

SA
'

0 : 1 : 2 :

3 : 4: 5 :

6 :
7 : 8 :

9:
10:

✓ ① sort 5A
"

recursively
Tcn)=TCÉn)tn+n

= 0cm)
.

✓ @ sort SAO in linear time

✓③ merge in linear time

29

Skew Algorithm Example
• Example: mississippi

mississippi
sissippi

sippi
pi

SA0

ississippi
issippi

ippi
i

SA12

ssissippi
ssippi

ppi

length2¥ * 3m!

00000 0000.00ft
0000 000--08 !00° 0☒←

<

00 ⑨ -

Renaming :
µw we can do recursion

.

3- mer → int

except 3-m .

29

Skew Algorithm Example
• Example: mississippi

mississippi
sissippi

sippi
pi

SA0

ississippi
issippi

ippi
i

SA12

ssissippi
ssippi

ppi

0123456789100

SA
'

SA
'

0 : → ii. 2 :

3 : →4:
"

⑤ 5 :

6 : → 7 : • ⑤ 8 :

9 : → 10 :
• ☒

[

ma sap

one - pay in radix sorting I ¥, Y.

29

Skew Algorithm Example
• Example: mississippi

mississippi
sissippi

sippi
pi

SA0

ississippi
issippi

ippi
i

SA12

ssissippi
ssippi

ppi

0123456789100

SA
'

SA
'

0 : i: 2 :

3 : 4: 5 :

6 :
7 : 8 :

9: 10:
at SAO ns.ybc-SA

"

if if
i → ← 5

" ←"" " * "A
"

/ aiosa-utffb-gbc.TW✓
is

aÉiEA ' "Yaz
bid]

31

• 1. Sort SA12 recursively.
• 2. Sort SA0 in linear time.
• 3. Merge sort SA0 and SA12 in linear time.

Skew Algorithm For Suffix Sorting

32

How to sort SA12 recursively

mod 2
iss ipp

ipp
ipp

ssi ppi
ppi
ppi

mod 1

• We need to know the order of these suffixes.
• In order to solve it recursively, we need to reduce the
problem to a smaller suffix sorting problem.

SA12

mississippi

33

Reduction to a smaller suffix sorting problem

mod 2
iss ipp

ipp
ipp

ssi ppi
ppi
ppi

mod 1

• Pad 0 to make their length multiple of 3. Then treat each string as a
string of “triplets”. Each subset is the suffixes of the “triplet string”.

• We connect the two “triplet strings” together to make a longer string.
We put the one with padding at the left.

SA12

34

Reduction

mod 2
iss ipp

ipp
ipp

ssi ppi
ppi
ppi

mod 1

iss ipp ssissippi
ipp ssissippi
ipp ssissippi

ssissippi
ssi ppi

ppi
ppi

• Now check all the suffixes of the concatenated
triplet string. Their relative order can be used
to build the relative order of SA12 easily.

• We are almost there, except that keeping
tripling the size (number of bytes) of the
“character” is a problem.

SA12

35

Renaming
• We solve the unlimited expansion problem by a trick called renaming. It maps each

unique triplet to a single unique integer.
• To rename, we first sort the triplets, and then assign integer values sequentially to

unique triplets. Sorting triplets can be done in linear time by radix sort.
• This ensures

• The max value is always bounded by the length of array.
• The suffix order is unchanged.

i00 -> 0
ipp -> 1
iss -> 2
ppi -> 3
ssi -> 4

iss ipp ssissippi

2 2 1 0 4 4 3

0000000

36

Renaming Example

iss ipp ssissippi
ipp ssissippi
ipp ssissippi

ssissippi
ssi ppi

ppi
ppi

i00 -> 0
ipp -> 1
iss -> 2
ppi -> 3
ssi -> 4

iss ipp ssissippi

2 2 1 0 4 4 3

2 2 1 0 4 4 3
2 1 0 4 4 3
1 0 4 4 3
0 4 4 3
4 4 3
4 3
3

37

Recursion
• After renaming, we just suffix sort the new integer string, which has length

approximately 2n/3. This can be done by recursion.
• The time complexity of renaming is dominated by sorting the triplets. This can be

solved in linear time with radix sort.

38

Radix Sort
• Radix Sort: Multiple passes. Each pass stable sorts according to one digit. From

the least to the most significant digit.
• original: its, iss, ipp, abc, att
• pass1: abc, ipp, its, iss, att
• pass2: abc, ipp, iss, its, att
• pass3: abc, att, ipp, iss, its

• Radix sorting requires O(k) space, where k is the size of the alphabet.
• Each pass takes linear time. And only 3 passes needed in our case. So it is linear

time.

39

Recap Sort S12 recursively

1. Padding and concatenation to get string of triplets.
2. Radix sort the triplets to get an ID (name) of each triple.
3. Recursion to get the suffix order on the string of IDs.

40

• We assume SA12 is sorted already, and learn the
other two steps first.

• 1. Sort SA12 recursively.
• 2. Sort SA0 in linear time.
• 3. Merge sort SA0 and SA12 in linear time.

Skew Algorithm For Suffix Sorting

41

Sort S0 in linear time
• Si = s[i] Si+1.
• For all Si in SA0, Si+1 has been sorted already. Use s[i] to do another

pass of radix sorting will give us the right order of SA0. This takes
linear time.

10: i
4: issippi
1: ississippi
7: ippi
8: ppi
5: ssippi
2: ssissippi

Sorted SA12

0: mississippi
3: sissippi
6: sippi
9: pi

To sort SA0

42

• 1. Sort SA12 recursively.
• 2. Sort SA0 in linear time.
• 3. Merge sort SA0 and SA12 in linear time.

Skew Algorithm For Suffix Sorting

43

Merge

10: i
4: issippi
1: ississippi
7: ippi
8: ppi
5: ssippi
2: ssissippi

Sorted SA12

0: mississippi
9: pi
6: sippi
3: sissippi

Sorted SA0

• Would be a simple merge if comparison of two takes constant time.
• Trouble is when two suffices share a long prefix, which takes more

than constant time to compare.
E.g. what if S5 = aaaa… and S6=aaaa…

44

Merge S0 and S12

• Merging only requires to compare a suffix Sj with j mod 3 = 0 with a
suffix Si with i mod 3 != 0. :

• Case 1: If i mod 3 = 1, we write Si as (s[i], Si+1) and Sj as (s[j], Sj+1).
• Since (i +1) mod 3 = 2 and (j + 1) mod 3 = 1, the relative order of Sj+1 and Si+1

can be determinded from their position in SA12.
• Case 2: If i mod 3 = 2, we compare the triples (s[i], s[i + 1], Si+2) and

(s[j], s[j + 1], Sj+2).

45

Recap

46

C codes
• 50 lines of C++ codes were given in J.C.M. Baeten et al. (Eds.): ICALP

2003, LNCS 2719, pp. 943–955, 2003.

• http://www.mpi-inf.mpg.de/~sanders/programs/suffix/

