Review Merge Sort

Divide.

Skew Algorithm For Suffix Sorting

- Let $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}-1}$ be all the n suffixes. S_{i} starts at i-th position.
- Skew algorithm uses divide and conquer. But it divides the problem into unequally sized parts.
- Two sets $\mathrm{SA}^{0}=\left\{\mathrm{S}_{\mathrm{i}}: \mathrm{i}=0 \bmod 3\right\}$ and $\mathrm{SA}^{12}=\left\{\mathrm{S}_{\mathrm{i}}: \mathrm{i}=1\right.$ or $\left.2 \bmod 3\right\}$.

Skew Algorithm Example

- Example: mississippi

0123456789 (10)

(2) Sore $S A^{0}$ in linear time

$$
\begin{aligned}
T(n) & =T\left(\frac{2}{3} n\right)+n+n \\
& =O(n) .
\end{aligned}
$$

\checkmark (3) merge is linear time

Skew Algorithm Example

- Example: mississippi

Skew Algorithm Example

- Example: mississippi

0123456789 (0)

Skew Algorithm Example

- Example: mississippi

0123456789 (10)

Skew Algorithm For Suffix Sorting

- 1. Sort SA^{12} recursively.
- 2. Sort SA^{0} in linear time.
- 3. Merge sort $S A^{0}$ and $S A^{12}$ in linear time.

How to sort SA^{12} recursively

mississippi
$\bmod 1$
ississippi
issippi
ippi
i
$\bmod 2$
ssissippi ssippi ppi

- We need to know the order of these suffixes.
- In order to solve it recursively, we need to reduce the problem to a smaller suffix sorting problem.

Reduction to a smaller suffix sorting problem

SA^{12}
$\bmod 1$

$$
\begin{array}{rr}
\text { mod } 1 & \bmod 2 \\
\text { ississippi00 } & \text { ssissippi } \\
\text { issippi00 } & \text { ssippi } \\
\text { ippi00 } & \text { ppi } \\
\text { i00 } &
\end{array}
$$

- Pad 0 to make their length multiple of 3. Then treat each string as a string of "triplets". Each subset is the suffixes of the "triplet string".
- We connect the two "triplet strings" together to make a longer string. We put the one with padding at the left.

Reduction

$$
\begin{array}{rrr}
\text { SA }{ }^{12} & \text { mod } & \bmod 2 \\
\text { ississippi00 } & \text { ssissippi } \\
\text { issippi00 } & \text { ssippi } \\
\text { ippi00 } & \text { ppi }
\end{array}
$$

ississippiOOssissippi

- Now check all the suffixes of the concatenated issippi00ssissippi triplet string. Their relative order can be used to build the relative order of SA^{12} easily.
- We are almost there, except that keeping tripling the size (number of bytes) of the ippi00ssissippi iOOssissippi ssissippi "character" is a problem. ssippi ppi

Renaming

- We solve the unlimited expansion problem by a trick called renaming. It maps each unique triplet to a single unique integer.
- To rename, we first sort the triplets, and then assign integer values sequentially to unique triplets. Sorting triplets can be done in linear time by radix sort.
- This ensures
- The max value is always bounded by the length of array.
- The suffix order is unchanged.

```
i00 -> 0
ipp -> 1
iss -> 2
ppi -> 3
ssi -> 4
```

ississiph 100 ssissiep

$\begin{array}{lllllll}2 & 2 & 1 & 0 & 4 & 4 & 3\end{array}$

Renaming Example

$$
\begin{aligned}
& \text { i00 -> } 0 \\
& \text { ipp -> } 1 \\
& \text { iss -> } 2 \\
& \text { ppi -> } 3 \\
& \text { ssi -> } 4 \\
& \text { ississippi00ssissippi } \\
& \text { issippiOOssissippi } \\
& \text { ippi00ssissippi } \\
& \text { iOOssissippi } \\
& \text { ssissippi } \\
& \text { ssippi } \\
& \text { ppi }
\end{aligned}
$$

Recursion

- After renaming, we just suffix sort the new integer string, which has length approximately $2 \mathrm{n} / 3$. This can be done by recursion.
- The time complexity of renaming is dominated by sorting the triplets. This can be solved in linear time with radix sort.

Radix Sort

- Radix Sort: Multiple passes. Each pass stable sorts according to one digit. From the least to the most significant digit.
- original: its, iss, ipp, abc, att
- pass1: abc, ipp, its, iss, att
- pass2: abc, ipp, iss, its, att
- pass3: abc, att, ipp, iss, its
- Radix sorting requires $\mathrm{O}(\mathrm{k})$ space, where k is the size of the alphabet.
- Each pass takes linear time. And only 3 passes needed in our case. So it is linear time.

Recap Sort S^{12} recursively

1. Padding and concatenation to get string of triplets.
2. Radix sort the triplets to get an ID (name) of each triple.
3. Recursion to get the suffix order on the string of IDs.

Skew Algorithm For Suffix Sorting

- We assume SA 12 is sorted already, and learn the other two steps first.
- 1. Sort SA 12 recursively.
- 2. Sort SA^{0} in linear time.
- 3. Merge sort SA^{0} and SA^{12} in linear time.

Sort S^{0} in linear time

- $S_{i}=\mathrm{s}[\mathrm{i}] \mathrm{S}_{\mathrm{i}+1}$.
- For all S_{i} in $\mathrm{SA}^{0}, \mathrm{~S}_{\mathrm{i}+1}$ has been sorted already. Use $\mathrm{s}[\mathrm{i}]$ to do another pass of radix sorting will give us the right order of SA^{0}. This takes linear time.

```
Sorted SA12
|lllllllllll
10: i
    4: issippi To sort SA0
    1: ississippi
    7: ippi
    8: ppi
    5: ssippi
    2: ssissippi
```

```
0: mississippi
```

0: mississippi
3: sissippi
3: sissippi
6: sippi
6: sippi
9: pi

```
9: pi
```


Skew Algorithm For Suffix Sorting

- 1. Sort SA^{12} recursively.
- 2. Sort SA^{0} in linear time.
- 3. Merge sort SA^{0} and SA^{12} in linear time.

Merge

```
Sorted SA12
10: i
    4: issippi
    1: ississippi
    7: ippi
    8: ppi
    5: ssippi
    2: ssissippi

\section*{Sorted SA0}
```

0: mississippi

```
0: mississippi
9: pi
9: pi
6: sippi
6: sippi
3: sissippi
```

```
3: sissippi
```

```
- Would be a simple merge if comparison of two takes constant time.
- Trouble is when two suffices share a long prefix, which takes more than constant time to compare.
E.g. what if \(S 5=\) aaaa. \(\ldots\) and \(S 6=\) aaaa...

\section*{Merge \(S^{0}\) and \(S^{12}\)}
- Merging only requires to compare a suffix \(S_{j}\) with \(j \bmod 3=0\) with a suffix \(S_{i}\) with i mod \(3!=0\) :
- Case 1: If i mod \(3=1\), we write \(S_{i}\) as \(\left(s[i], S_{i+1}\right)\) and \(S_{j}\) as \(\left(s[j], S_{j+1}\right)\).
- Since \((i+1) \bmod 3=2\) and \((j+1) \bmod 3=1\), the relative order of \(S_{j+1}\) and \(S_{i+1}\) can be determinded from their position in \(\mathrm{SA}^{12}\).
- Case 2: If i mod \(3=2\), we compare the triples ( \(s[i], \mathrm{s}[i+1], \mathrm{S}_{\mathrm{i}+2}\) ) and \(\left(s[j], s[j+1], S_{j+2}\right)\).

\section*{Recap}


C codes
- 50 lines of C++ codes were given in J.C.M. Baeten et al. (Eds.): ICALP 2003, LNCS 2719, pp. 943-955, 2003.
- http://www.mpi-inf.mpg.de/~sanders/programs/suffix/```

