Review

1. Distance-based phylogeny.

2. How to get a good distance.

- \# of mutations
- edit distance
- Information distance.

3. phylogeny v.S. classification.

Suffix Tree and Array

String Matching

- So far we learned how to find "approximate" matches - the alignments. And they are difficult. Finding exact matches are much easier.
- To search for a short string P of length m in a large text T of length n.
- Applications:

- Keyword searching
- DNA reads mapping
- Type I: Match only once.
- E.g. KMP algorithm and Apostolico-Giancarlo algorithm.

- $\mathrm{O}(\mathrm{m})$ to preprocess, and $\mathrm{O}(\mathrm{n})$ to match.
- Type II: Match multiple patterns multiple times.
- Better index T first to speed up the matching time.

Things To Study

- Suffix tree and array are two data structures for this purpose.
- Suffix Tree
- Data structure
- A few examples of using suffix tree to solve practical problems.
- Suffix Array
- Data structure
- The skew algorithm for constructing suffix array.

A Little History

- 1973, Weiner introduced the concept of suffix tree (position tree), which Donald Knuth subsequently characterized as "Algorithm of the Year 1973".
- 1990, Gene Myers and Udi Manber proposed suffix array.
- Gene Myers: former VP Informatics Research at Celera Genomics
- Udi Manber: VP engineering, Google.
- 1992, Gonnet, Baeza-Yates \& Snider independently discovered suffix array (called PAT array).
- Gaston Gonnet: cofounders Maplesoft and OpenText.
- Baeza-Yates: VP for Yahoo! Europe and Latin America.

As a picture

- Here is the suffix tree for GAAGAT\$

GAAGAT\$

- A node's label is the concatenation of all edge labels for the path leading to that node.
- The path from the root, r, to any leaf x is a suffix of the string S.
- Suppose there is a special "end-of-string" character, each suffix will end at the leaf.
- Each internal node has at least 2 children.
- Edge labels to the child nodes of an internal node start with different letters.

Application I. Search for a substring.

- Any substring of S is a prefix of a suffix.
- Example of using this: Is the string \times a substring of S?
- Start at the root, and follow paths labelled by the characters of x. If you can get to the end of x, then yes, it is.

Linear Space Structure

- Each edge doesn't need to be labelled with a string, but just with starting and ending in the sequence.
- This is the same suffix tree as before, but in linear space.
- Here is the suffix tree for GAAGAT\$

How to construct a suffix tree?

- There is a linear time algorithm to construct a suffix tree. (We will not study it.)
- We'll examine a quadratic-time algorithm (quite intuitive).
- The idea is to
- Start with an empty tree.
- Iteratively add more suffices into the tree (from shortest to longest).

One round

- Suppose the following is the suffix tree fot GAAGA\$, add another suffix AGAAGA\$.
Agat

- First, follow the edges for A and for GA from the root.
- Then split after the A since the only path in the tree is for $\$$, and we have an A, instead.
- Add a new edge for AGA\$.
- This yields this new tree for AGAAGA\$

Quadratic Time Construction

- Given: A string S of length m over a finite alphabet. The last character of S is a unique $\$$ character.
- We'll build the suffix tree from right to left.
- S[m..m], S[m-1..m], S[m-2..m],
- Begin with this tree:

- Then, for $i=m$ downto 1 :
- Follow the letters of $\mathrm{S}[\ldots \ldots m$ along the edges of the tree T .
- When we reach a point where no path exists, break the current edge and add a new edge for what is left.
- Time complexity: $\mathrm{O}\left(m^{2}\right)$. (Remember: The best algorithm has linear time.)

Application II: Longest Common Substring

- What's the longest substring common to both S_{1} and S_{2} ?
- Straightforward algorithm will try to compare all substrings of equal length. This takes cubic time.
- Can we do better?

match $=1$
mismated $=-\infty$
inge $=-\infty$
local alignment

Longest Common Substring with Suffix Tree

- Build a suffix tree for $S=S_{1} \# S_{2}$ e, where $\#$ and $\$$ are unique characters.
- All suffixes of S_{1} end with an edge including $\# S_{2} \$$. So we can label whether a leaf belongs to S_{1} or S_{2}
- Substrings are prefixes of suffixes, ie. internal and leaf nodes of the tree.
- Each common substring is the prefix of at least two suffixes, each from an input string (S_{1} or S_{2}).
- Longest?

Example

ATG\#TGC\$

Step 1. Label leaves as red or blue, depending on whether it is a suffix starting in first or second string.

Example

ATG\#TGC\$

Step 2. In a bottom up order, label internal nodes. If all child nodes have the same color, label it with the same color; If not, label it with purple.

Example

ATG\#TGC\$

Step 3. Find the purple node with the longest path to the root.

Algorithm Summary

- 1. Build suffix tree of $\mathrm{S}_{1} \# \mathrm{~S}_{2} \$$
- 2. Color all leaf nodes
- red if v 's label is a substring of S_{1}
- blue if it's a substring of S_{2}
- 3. Color all internal nodes from bottom up
- red (or blue) if all child nodes are red (or blue)
- purple if otherwise
- 4. Find the purple node with longest path label.
- Complexity: Linear time, linear space.
- Sketch proof of correctness:
- Let t be the longest common substring. Follow the path label t starting from the root. The path can't stop in the middle of the edge - otherwise t is not the longest. Then the path has to stop at an internal node. And it has to be purple.

Application III: Maximal Unique Match

Maximal Unique Matches

- Given two strings, a MUM (Maximal Unique Match) is a string that occurs exactly once in each string, and is maximal (can't be extended either way and still be a match).
- E.g.ATGAATC vs. AGATC
- AT is not. not unique
- G is not. not maximal: GA is longer.
- GA is a MUM.
- ATC is a mum.

How to find mums?

- Build a suffix tree for $S_{1} \# S_{2} \$$
- Color the nodes as in the longest common substring algorithm.
- Each MUM must be a purple internal node that has exactly two leaf children: one red and one blue.
- It is shared by the two strings.
- It can't extend to the right by an additional letter and still be shared.
- It must be unique.

Example:

How to find mums?

- But a purple internal node may not be a MUM: only because the two occurrences may still extend to the left.
- Node G is not: For G's two occurrences, the left character are both T.
- Node TG is: For TG's two occurrences, the left characters are A and \#, respectively.
- But it is easy to compute the left character of each leaf
- It is a suffix, and we know its path's starting position in the original string.

Example:
ATG\#TGC\$

Summary

- Build a suffix tree for $\mathrm{S}_{1} \# \mathrm{~S}_{2} \$$.
- For each leaf v, define left (v) be the letter at left of suffix v.
- Find the internal nodes that
- Have exactly two child leaves
- The two child leaves are two suffixes from S1 and from S2, respectively.
- The two child leaves must have two different left characters.
- Linear time.
- After find all MUMs, use them as anchor to speed up global alignment.

MUMMER: Large-scale Global Alignment

- Large-scale global alignment
- Idea:

- Pick some "anchors" through which the true alignment is very likely to fall.
- Align the regions between the anchors either recursively or just using classical global alignment tools.

$$
\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}\right)^{2}=\frac{n^{2}}{2} O\left(a^{2}\right)
$$

- MUMs are good anchors: maximal, unique, match.
- First program that does so: MUMMER by Delcher et al.

$$
k \cdot\left(\frac{n}{k}\right)^{2}=\frac{n^{2}}{k}
$$

Quick Note on Suffix Array

- Suffix tree is not a compact data structure.
- A lot of pointers
- Gene Myers and Udi Manber (VP enginnering, Google) proposed suffix array.
- A suffix array stores the positions in a string. Each position is an integer so this is a length n integer array.
- Each position corresponds to a suffix starting at this position.
- The suffix array is sorted according to the string order of the corresponding suffixes.
- AGAAGAT

$$
O(m \cdot \log n) \text { for query }
$$

$3,1,4,6,2,5,7$

String Matching

- Binary search to find substring of length m.
- $\mathrm{O}(\mathrm{m} \log \mathrm{n})$ if implemented straightforwardly
- $\mathrm{O}(\mathrm{m}+\log \mathrm{n})$ if with an auxiliary data structure called longest common prefix (LCP) array. We do not study this but you should be aware of this fact.

