
Review

I . Distance - based phylogeny
.

i
B

T

÷÷i÷H÷¥±x÷¥÷÷¥T:÷¥
2. How to get a good distance .

- * of mutations

- edit distance

- Information distance
.

3. phylogeny v. s
. classification .

1

Suffix Tree and Array

2

String Matching
• So far we learned how to find “approximate” matches – the alignments. And they

are difficult. Finding exact matches are much easier.
• To search for a short string P of length m in a large text T of length n.
• Applications:

• Keyword searching
• DNA reads mapping

• Type I: Match only once.
• E.g. KMP algorithm and Apostolico-Giancarlo algorithm.
• O(m) to preprocess, and O(n) to match.

• Type II: Match multiple patterns multiple times.
• Better index T first to speed up the matching time.

*

÷÷÷ñ

3

Things To Study
• Suffix tree and array are two data structures for this purpose.
• Suffix Tree
• Data structure
• A few examples of using suffix tree to solve practical problems.

• Suffix Array
• Data structure
• The skew algorithm for constructing suffix array.

4

A Little History
• 1973, Weiner introduced the concept of suffix tree (position tree),

which Donald Knuth subsequently characterized as "Algorithm of the
Year 1973".

• 1990, Gene Myers and Udi Manber proposed suffix array.
• Gene Myers: former VP Informatics Research at Celera Genomics
• Udi Manber: VP engineering, Google.

• 1992, Gonnet, Baeza-Yates & Snider independently discovered suffix
array (called PAT array).
• Gaston Gonnet: cofounders Maplesoft and OpenText.
• Baeza-Yates: VP for Yahoo! Europe and Latin America.

5

As a picture
• Here is the suffix tree for GAAGAT$

G
G

G

G
A

A

A

A A

A

A

T

T

T

T T

T

• An edge is labelled with a substring of the original string.
• A node’s label is the concatenation of all edge labels for the path leading to that node.
• The path from the root, r, to any leaf x is a suffix of the string S.
• Suppose there is a special “end-of-string” character, each suffix will end at the leaf.
• Each internal node has at least 2 children.
• Edge labels to the child nodes of an internal node start with different letters.

$

$

$

$ $

$

$ -⇐"

÷⇐÷±⇒f•
AI

.

I÷÷ É
9T ⑧

6

Application I. Search for a substring.
• Any substring of S is a prefix of a suffix.

• Example of using this: Is the string x a substring of S?
• Start at the root, and follow paths labelled by the characters of x. If you can get

to the end of x, then yes, it is.

7

Linear Space Structure

• Each edge doesn’t need to be labelled with a string, but just
with starting and ending in the sequence.

• This is the same suffix tree as before, but in linear space.

4-7

2

6-7

6-7

6-7

1-2

3-7 3-7

GAAGAT$

7

8

How to construct a suffix tree?
• There is a linear time algorithm to construct a suffix tree. (We will not

study it.)
• We’ll examine a quadratic-time algorithm (quite intuitive).
• The idea is to
• Start with an empty tree.
• Iteratively add more suffices into the tree (from shortest to longest).

µ
At $

9

One round
• Suppose the following is the suffix tree for GAAGA$, add another suffix

AGAAGA$.

• First, follow the edges for A and for GA from the root.
• Then split after the A since the only path in the tree is for $, and we have an A,

instead.
• Add a new edge for AGA$.

G
G

G

G
A

A

A

A A

A

A

$

$

$

$ $

$

AGAT •

"

••¥:$

10

New tree
• This yields this new tree for AGAAGA$

G
G

G

G
A

A

A

A A

A

A

$

$

$

$ $

$
A
G
A

$

11

Quadratic Time Construction
• Given: A string S of length m over a finite alphabet. The last character of S is a

unique $ character.
• We’ll build the suffix tree from right to left.

• S[m..m], S[m-1..m], S[m-2..m], ……
• Begin with this tree:

• Then, for i = m downto 1:
• Follow the letters of S[i…m] along the edges of the tree T.
• When we reach a point where no path exists, break the current edge and add a new

edge for what is left.
• Time complexity: O(m2). (Remember: The best algorithm has linear time.)

$

12

Application II: Longest Common Substring
• What’s the longest substring common to both S1 and S2?
• Straightforward algorithm will try to compare all substrings of equal length. This

takes cubic time.
• Can we do better?

• match = 1

mismatch = - co

:÷÷ indef =- -

local alignment .

13

Longest Common Substring with Suffix Tree
• Build a suffix tree for S=S1#S2$, where # and $ are unique characters.
• All suffixes of S1 end with an edge including #S2$. So we can label whether a leaf

belongs to S1 or S2
• Substrings are prefixes of suffixes, i.e. internal and leaf nodes of the tree.
• Each common substring is the prefix of at least two suffixes, each from an input

string (S1 or S2).
• Longest?

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

00

•

. internal node

0
0 {mixed color

leaves .

common

sub string
.

14

Example

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

ATG#TGC$ Step 1. Label leaves as red or blue,
depending on whether it is a suffix
starting in first or second string.

15

Example

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

ATG#TGC$
Step 2. In a bottom up order, label
internal nodes. If all child nodes have the
same color, label it with the same color; If
not, label it with purple.

16

Example

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

ATG#TGC$
Step 3. Find the purple node with the
longest path to the root.

17

Algorithm Summary
• 1. Build suffix tree of S1#S2$
• 2. Color all leaf nodes

• red if v’s label is a substring of S1
• blue if it’s a substring of S2

• 3. Color all internal nodes from bottom up
• red (or blue) if all child nodes are red (or blue)
• purple if otherwise

• 4. Find the purple node with longest path label.
• Complexity: Linear time, linear space.
• Sketch proof of correctness:

• Let t be the longest common substring. Follow the path label t starting from the root. The path
can’t stop in the middle of the edge – otherwise t is not the longest. Then the path has to stop
at an internal node. And it has to be purple.

18

Application III: Maximal Unique Match

19

• Given two strings, a MUM (Maximal Unique Match) is a string that
occurs exactly once in each string, and is maximal (can’t be extended
either way and still be a match).

• E.g. ATGAATC vs. AGATC
• AT is not.
• G is not.
• GA is a MUM.
• ATC is a mum.

Maximal Unique Matches

-

⑥ 000

of

not unique
not maximal : GA is longer .

0

20

How to find mums?
• Build a suffix tree for S1#S2$
• Color the nodes as in the longest common substring algorithm.
• Each MUM must be a purple internal node that has exactly two leaf children:

one red and one blue.
• It is shared by the two strings.
• It can’t extend to the right by an additional letter and still be shared.
• It must be unique.

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

ATG#TGC$
Example:

_-- c⇒uniqT
maximal .

0
0

⇐.

21

How to find mums?
• But a purple internal node may not be a MUM: only because the two

occurrences may still extend to the left.
• Node G is not: For G’s two occurrences, the left character are both T.
• Node TG is: For TG’s two occurrences, the left characters are A and #,

respectively.
• But it is easy to compute the left character of each leaf

• It is a suffix, and we know its path’s starting position in the original string.

C$G
C$

#TGC$

TG

C$

#TGC$

ATG#TGC$

$
#TGC$

ATG#TGC$
Example:

let
character .

C

q
-

T G-nil
*

A T

22

Summary
• Build a suffix tree for S1#S2$.
• For each leaf !, define left(!) be the letter at left of suffix !.
• Find the internal nodes that

• Have exactly two child leaves
• The two child leaves are two suffixes from S1 and from S2, respectively.
• The two child leaves must have two different left characters.

• Linear time.
• After find all MUMs, use them as anchor to speed up global alignment.

23

MUMMER: Large-scale Global Alignment
• Large-scale global alignment

• Idea:
• Pick some “anchors” through which the true alignment is very likely to fall.
• Align the regions between the anchors either recursively or just using classical

global alignment tools.

• MUMs are good anchors: maximal, unique, match.
• First program that does so: MUMMER by Delcher et al.

÷ :

c- c-15=-1 Ola ")
.

:É¥
k .# = -2

24

Quick Note on Suffix Array
• Suffix tree is not a compact data structure.
• A lot of pointers

• Gene Myers and Udi Manber (VP enginnering, Google) proposed
suffix array.

• A suffix array stores the positions in a string. Each position is an
integer so this is a length n integer array.

• Each position corresponds to a suffix starting at this position.
• The suffix array is sorted according to the string order of the

corresponding suffixes.

25

Suffix Array
• AGAAGAT

1 = AGAAGAT
2 = GAAGAT
3 = AAGAT
4 = AGAT
5 = GAT
6 = AT
7 = T

3 = AAGAT
1 = AGAAGAT
4 = AGAT
6 = AT
2 = GAAGAT
5 = GAT
7 = T

3, 1, 4, 6, 2, 5, 7

☒ n
? log n) for sorting

.

-

¥
"""""

g- AI . .aksu | of

-

26

String Matching
• Binary search to find substring of length m.
• O(m log n) if implemented straightforwardly
• O(m + log n) if with an auxiliary data structure called longest common prefix

(LCP) array. We do not study this but you should be aware of this fact.D-

