Review:

Symbols

 $D[i, p] = \max D[i-1, p'] \times p' T[p', p] \times C[p, s_i]$

2 Gene prokaryotes v.s enforryotes genetic code, start, stop, codons. open reading frame. codon bias

http://www.kazusa.or.jp/codon/

Escherichia coli O157:H7 EDL933 [gbbct]: 5347 CDS's (1611503 codons)

fields: [triplet] [frequency: per thousand] ([number])

UUU	22.2(35846)	UCU	8.7(14013)	UAU	16.5(26648)	UGU	5.2(8458)	
UUC	15.9(25565)	UCC	8.9(14420)	UAC	12.3(19766)	UGC	6.4(10285)	
UUA	13.8(22316)	UCA	8.1(13117)	UAA	2.0(3163)	UGA	1.1(1751)	
UUG	13.0(20904)	UCG	8.8(14220)	UAG	0.3(435)	UGG	15.3(24656)	
CUU	11.4(18366)	CCU	7.2(11657)	CAU	12.8(20631)	CGU	20.2(32590)	
CUC	10.5(16869)	CCC	5.6(8961)	CAC	9.4(15116)	CGC	20.8(33547)	
CUA	3.9(6257)	CCA	8.4(13507)	CAA	14.7(23703)	CGA	3.8(6166)	
CUG	51.1(82300)	CCG	22.4(36178)	CAG	29.4(47324)	CGG	6.2(9955)	
AUU	29.7(47838)	ACU	9.1(14639)	DAA	19.2(30864)	AGU	9.4(15123)	
AUC	23.9(38504)	ACC	22.8(36724)	AAC	21.7(34907)	AGC	16.0(25800)	
AUA	5.5(8835)	ACA	8.1(13030)	AAA	34.0(54723)	AGA	2.9(4656)	
AUG	27.2(43846)	ACG	15.0(24122)	AAG	11.0(17729)	AGG	1.8(2915)	
GUU	18.1(29200)	GCU	15.4(24855)	GAU	32.8(52914)	GGU	24.2(38983)	
GUC	14.8(23870)	GCC	25.2(40571)	GAC	19.2(30953)	GGC	28.1(45226)	
GUA	10.9(17561)	GCA	20.7(33343)	GAA	39.3(63339)	GGA	8.9(14286)	
GUG	26.2(42261)	GCG	32.3(52091)	GAG	18.7(30158)	GGG	11.8(18947)	

Pr(seq gene) Pr(seq random)

Coding GC 51.50% 1st letter GC 58.44% 2nd letter GC 40.88% 3rd letter GC 55.17%

A Better Gene Finder

- We can use the log likelihood ratio score to evaluate each ORF. Each codon XYZ contributes score
- $\log \frac{P(XYZ)}{P(X)P(Y)P(Z)}$
- An ORF is predicted as a gene if the sum of codon score is above a threshold.
- This is better. But it does not catch the correlation between adjacent codons.

HMM

- We have used HMM in the classroom example to catch correlations between adjacent events.
- This can be used to model gene prediction.
- For example:
 - Symbols: Nucleotide bases.
 - States: start codon, stop codon, coding, non-coding (intergenic).

Imput: ACATGETCA Flidden Harregi:

Prokaryote gene finding HMM

Gene Prediction as HMM

start codon coding intergenic stop codon

- Annotated the sequence with most probable path of states. This provides a reasonable answer to gene prediction.
- A difference here: emission is not fixed length. But this does not forbid us from solving it with dynamic programming.

Dynamic Programming

start codon coding intergenic stop codon

 Define D[k,p] be the max probability achieved by first k symbols for a path with the last state being p.

Recurrence Relation

Dynamic Programming

• Once the recurrence relation is obtained. It is straightforward to work out a dynamic programming algorithm.

Easy enough to implement?

- This is very easy to implement.
- If desired, one can also use a higherorder HMM.
- Parameter training must be done carefully.

Gene Prediction

- Besides the codon bias that can be captured by HMM, there are other signals in a gene structure that can be employed by a gene prediction program.
 - E.g. the promoter of a gene is a region of DNA sequence located near the start codon.

Promoters

- These rules are only approximately correct.
- The presence of promoters allow a very high transcription rate.
- Exercise: How to assign a score to the promoter.

PSWM Positional Specific Weight Matrix 3 4 5 6 23 1 0.76 A 0.1 20.0 1.0 1.0 0.1 0,1 10 C 0.03 G 0.2 0.1 0.2 0.04 1.0 0.77 0.04 0.6 0.9 0.14 0.82 $q(a) = \frac{1}{4}$ Pi(a) $score(s_1 \dots s_b) = \log \frac{\Pr(s_1 \dots s_b \mid promoter)}{\Pr(s_1 \dots s_b \mid rom of m)}$ $= \log \frac{6}{11} \frac{9i(si)}{9(si)}$ $= \frac{6}{\sum_{i=1}^{6} \log \frac{P_i(s_i)}{q(s_i)}}$

Summary

- HMM is a general model to predict some hidden states by examining emitted symbols.
- HMM can be used in gene prediction to harvest the codon bias and adjacent codon correlation.
- Gene prediction can use more information about the gene structure than codon bias.
- We only talked about prokaryote gene prediction. Eukaryote gene prediction is harder because of introns.