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Hidden Markov Model



HMM

 Hidden Markov model was first invented in speech
recognition. But are widely used in many other areas

including bioinformatics.

« An automata that has “hidden states”. At each time
point, it emits a symbol, and change a state with certain

probability.
« We want to derive the hidden states by the emitted
symbols.



Classroom example

« Think of a student in classroom.
« At any minute, a student is in one of 3 hidden states that | try to
figure out:
« U: understands
« T: does not understand but tries to understand
« L:is lost completely and does not try to understand
« Meanwhile, the student emits one of 3 symbol/s that | can observe
« Look at me
 Write/Type
« Sleep



Classroom Example

 Now suppose | see a student’s behavior
is the following in the past several
minutes. What is his internal states at
each minute?

® % BB % % B 8BS
g S N N N N S N N N AT N N ()
2323232222227 2227 > 2|2 7 3| ?




Classroom Example




Classroom Example

B
&

Emissions 1‘ T

Typically, HMM assumes that emission probability depends only on
current state; and current state only depends on previous state.

We want to find the most likely path of states given the symbols
(observations).

...... Transitions




Classroom Example

(T) Transition matrix

U 0.8 02 0 add op o L
T 0.4 0.4 0.2
L 0.05 0.05 0.9

(E) Emission matrix

| Look |Write |Sleep_
u . .

T 0.9 0.1 0
L 0.1 0.6 0.3

U: Understands
T: Tries to understand
L: Lost completely

add. Wf +07)



Classroom Example

5=S5,S,...S, : sequence of symbols;

P=P,P,...P,: path of states.
We want to maximize Pr(I?IS) = Pr(P,S) / Pr(S).

Therefore, we want to maximize -
: fvoms(§5in o ymygLlen
PEIE) bp.sy=TTPece £ Prcs, 1)
| (S, 15

B 6 & 8 &8 @ @ ® B B F
r 2t 2 22222222211
22 (2223 222 222?222 > 232 |7

/X * Note: To deal with the fi ,

LR fe-0)- define Prip P = 1in above formula, &




Solving HMM

« We use dynamic programming again. Define
D[k,p] be the maximum probability achieved by
first k states given that the last state is p.

% % B B ® O k-1, P
O N A M
?23{2[2723 p

k

 Then max, D[n,p] is the maximum probability
achieved by the complete path, which is what we
want to compute.

|t is not hard to obtain a recurrence, Relation:
Dlk, p]= MaxX pry k1.prkl=p TE.,,FELR,S]

l=<i<



Solving HMM

X % B B ®
NG A A A
217272 p> p

k

D[k, p] = n}of;lxD[k — 1,p'] Pr(p|p’) Pr(S;lp)

10



Solving HMM

The algorithm:

Input: S = S,5,...5,

Output: P=P;P,...P,

1. for every state p, let D[1,p] = Pr(S;|p).

2. for k from 2 to n,

2.1 for every state p,

2.1.1 let Dlk,p] = maxDlk — 1,p"| Pr(p|p") Pr(S;|p)
3. backtrace to compute the opptimal path.

11



(E) emission matrix

_______[Look Write |Sleep_

Understand 0.6 0.35 0.05
Try 0.9 0.1 0
Lost 0.6 0.3

0.1

D[k, p]
= max Dk —1,p"] Pr(p[p’) Pr(S;|p)

Y=

D2, u ]
wel: Pz B )
® ® [@ ora)=DLuu)-Tlwul Ewd
1& »r :0<é‘1~‘§)‘%x o.é
@ ? .)|7 IR = Dr‘lg%’ :
TS @2 P =7.
0.6 0216 0:970:¢X0.f =021 b
O.d}ﬁﬁ\e% ey, L
0.1 o XOFS 0. = 0,273
) 12




Notes

Do not multiply

« because soon the numbers become so small that the double precision will
give you value 0.

* Do a logarithm and use additions instead.

Dlk,p] = rrlloe,lxD[k —1,p'| Pr(plp") Pr(S;|p)

log D[k,p] = max(log D[k — 1,p'] + log Pr(p|p’) + log Pr(S;|p))
p

13



Parameter Estimation

« All of our computation depends on the transition probabilities
and emission probabilities. How do we estimate these
parameters?

14



Parameter Estimation

If we have an annotated sequence with both symbols and states,
then these can be trained by counting.

If we do not, then we can start with a reasonable guess of the
parameters and annotate the sequence.

Then we use the annotation to train a new set of probabilities.
Repeat until converge.

There is some guarantee to the convergence. But does not
guarantee this will converge to the right solution.

15



Pseudocounts

 |f the training data include no cases of a particular
emission from a particular state, then its probability will

be 0 in this model.
« That’s no good.

« So we add pseudocounts to make the probabilities not
zero when an event should be able to happen.

16



Higher Order HMM

 Think again the classroom example:

(E) Emission matrix

U: Understands
T: Tri nderstand
0.35 0.05
T 0.9 0.1 0
L 0.1 0.6 0.3

 The emission of a symbol should not only depend on
current state, but sometimes also the previous symbol.

« E.g. Sleeping at previous moment leads to a higher probability
of sleeping now.

17



1st Order HMM

« To accommodate the correlation between the adjacent symbols,
the emission matrix needs to be expanded.

e The emission matrix becomes Pr(S; |P,S._,).

PR g
223222232 2 B2 22 2 2 2

18



1st Order HMM

Before

Pr(P,S) =] | Pr(B, | P_)Pr(S, | P)
Now l

Pr(P,S) =] | Pr(B | P_)Pr(S, | B,S,.))

To find the path P to ma>l<imize, we let D[k,p] be the maximum

probability obtained by the first k states ending at p. We can
obtain the following recurrence relation similarly as before.

Dlk,p] = max D[k — 1,p'| Pr(p|p") Pr(S;|p, Si-1)
We can still do dynamPc programming.

19



Higher Order HMM

To generalize, we can let the current
emission depend on the current state,
and previous k symbols.

Then this is called the k-th order HMM.

Solving such a HMM is similar as before.
Running time not changed.

The only difficulty is the parameter
training because the emission matrix has
many more parameters for larger k.

20



Prokaryote Gene Finding

 The'prokaryotes (pronounced /prou'kaeriouts/; singular
prokaryote /prou'kaerisat/) are a group of organisms
that lack a cell nucleus (= karyon).

« The opposite is the eukaryotes.
« Most of prokaryotes are unicellular.

* Prokaryote genes do not have introns. So their genes is
a linear structure.

Intron video:
http://www.youtube.com/watch?v=00BQJbLNYSg

21



From Gene to Protein (in Prokaryotes)

/ Coding strand

5’ TGATCATGATCTCGTAAGATATC 3’DNA
3’ ’

ACTAGTACTAGAGCATTCTATAG ‘\5

Template (noncoding) strand

‘ Transcription

3’ wmANA

l \L L \L | ‘ translation
B@E = s

N-‘erminus C-fermninus




Genetic code

First letter

Second letter

U A G
UUU| phenvi-  |lucU UAU . UGU ; u
Uuc ala;r;{)lfe R UAC Tyrosine uGc | Cysteine C
— Serine
UUA [ ggé WIVN Stop codon Stop codon | A
UuG [8J.Xe Stop codon Tryptophan |G
I =T T
CUA Leucine CCA Proline Al o . CGA Arginine A

utamine

CUG CCe CAG CGG o
AUU : AAU . ||AGU| .. U
AUC |Tsoleucine || ¢ Ve Py
AUA ACA Threonine

Methionine; || ACG ﬁﬁé Lysine ﬁgé Arginine A
5] start codon G
GUU GCU GAU| Aspartic ||GGU ch
Guc : G y acid GGC .
GUA Valine GCA Alanine T GCA Glycine “
GUG GCG GAG acid GGG G

® 2001 Sinauer Asgociates, Inc.
codons

Third letter

>OO0O-o0r0>0—A->"

—

—

O
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A Trivial Gene Finder

« Open Reading Frame (ORF) is a substring that
« starts with a start codon
« ends with a stop codon
* no stop codon in the middle

« |If ORF is long, then likely it is a gene or a part of a gene.
« Why?

...TAG
...TGA
ATG... ...TAA
\ }
start codon Y stop codon

no stop codon in middle 24



Codon bias

« A codon XYZ occurs with different
frequencies in coding regions and non-
coding regions
« different amino acids have different freq.

« Diff. codons for the same amino acid have diff.
freq.

* In random regions approx. p(X)*p(Y)*p(Z)

Codon Bias Tables
(% of codons used
for each residue)

Amino Acid
Gly
Gly
Gly
Gly

25



