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Hidden Markov Model

gene prediction : ¥¥
non - coding
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HMM
• Hidden Markov model was first invented in speech 

recognition.  But are widely used in many other areas
including bioinformatics.

• An automata that has “hidden states”. At each time 
point, it emits a symbol, and change a state with certain 
probability.  

• We want to derive the hidden states by the emitted 
symbols. 
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Classroom example
• Think of a student in classroom.  
• At any minute, a student is in one of 3 hidden states that I try to

figure out: 
• U: understands
• T: does not understand but tries to understand
• L: is lost completely and does not try to understand

• Meanwhile, the student emits one of 3 symbols that I can observe
• Look at me
• Write/Type
• Sleep



4

Classroom Example
• Now suppose I see a student’s behavior

is the following in the past several 
minutes. What is his internal states at
each minute?

? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Classroom Example

U U U U T T T T L L L L L L



Classroom Example

U U U U T T T T L L L L L L

Transitions U U
U T

Emissions
U U

……

……
Typically, HMM assumes that emission probability depends only on
current state; and current state only depends on previous state.
We want to find the most likely path of states given the symbols
(observations).
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Classroom Example

U T0.4
0.050.8

0.4 (T) Transition matrix

(E) Emission matrix
L

0.2

0.9

0.2
0.05

U T L
U 0.8 0.2 0
T 0.4 0.4 0.2
L 0.05 0.05 0.9

Look Write Sleep
U 0.6 0.35 0.05
T 0.9 0.1 0
L 0.1 0.6 0.3

U: Understands
T: Tries to understand
L: Lost completely

@ add up to 1-

n y
l

-

.- add up tot



8

Classroom Example
• S=S1S2…Sn : sequence of symbols; 
• P=P1P2…Pn : path of states.
• We want to maximize Pr(P|S) = Pr(P,S) / Pr(S).
• Therefore, we want to maximize 

? ? ? ? ? ? ? ? ? ? ? ? ? ?

* Note: To deal with the first state, we can
define Pr #! #" = 1 in above formula.

-
-
-

transistor emission

Prlsilpi )

•

I
Prlpilpi - D .

-
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Solving HMM
• We use dynamic programming again.  Define

D[k,p] be the maximum probability achieved by
first k states given that the last state is p.

• Then maxp D[n,p] is the maximum probability
achieved by the complete path, which is what we
want to compute.

• It is not hard to obtain a recurrence Relation:k

? ? ? ? p
k

-

k DEK.pt/D(-k-i,pJ.T-Lpip.E-Lp.sig)
Max! t

p
.

Definition of
DIkp] →
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Solving HMM

k

? ? ? p’ p
k

! ", $ = max
!!

! " − 1, $" Pr $|$" Pr .#|$
-

T-F.py-EEP.si]
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• The algorithm:
• Input: S = S1S2…Sn
• Output: P=P1P2…Pn
• 1. for every state p, let D[1,p] = Pr(S1|p).
• 2. for k from 2 to n, 
• 2.1   for every state p,
• 2.1.1   let 
• 3. backtrace to compute the optimal path.

Solving HMM

! ", $ = max
!!

! " − 1, $" Pr $|$" Pr .#|$

É→É→ . . .

states ,{TFH€

ten-Time .
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Example

U T0.4
0.050.8

0.4

(E) emission matrix

L

0.2

0.9

0.2
0.05

Look Write Sleep
Understand 0.6 0.35 0.05
Try 0.9 0.1 0
Lost 0.1 0.6 0.3

? ? ? ……

0.6
0.9
0.1

! ", $
= max

!!
! " − 1, $" Pr $|$" Pr .#|$

D[2,4]
case 't :P '=u
D[2.a) =D'Ll ,u]oT[um] - Éu,L]

0 :
-0.6×0.8×0.6
= 0.288 .

i.

casez :p'=T .

→
0.288

U go.at 0.9×0,4×0.6=0.216
"

T

.

y
.

/
°o°}

case } :p '=L
• 0,1×005×0.6--0,00}
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Notes
• Do not multiply

• because soon the numbers become so small that the double precision will 
give you value 0.

• Do a logarithm and use additions instead.

log! ", $ = max
$!

log! " − 1, $" + log Pr $|$" + log Pr .#|$

! ", $ = max
!!

! " − 1, $" Pr $|$" Pr .#|$



Parameter Estimation
• All of our computation depends on the transition probabilities 

and emission probabilities.  How do we estimate these 
parameters?

14
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Parameter Estimation

• If we have an annotated sequence with both symbols and states, 
then these can be trained by counting.

• If we do not, then we can start with a reasonable guess of the 
parameters and annotate the sequence.

• Then we use the annotation to train a new set of probabilities.  
Repeat until converge.

• There is some guarantee to the convergence.  But does not 
guarantee this will converge to the right solution.
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Pseudocounts
• If the training data include no cases of a particular 

emission from a particular state, then its probability will 
be 0 in this model.

• That’s no good.
• So we add pseudocounts to make the probabilities not 

zero when an event should be able to happen.
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Higher Order HMM
• Think again the classroom example:

• The emission of a symbol should not only depend on 
current state, but sometimes also the previous symbol.
• E.g. Sleeping at previous moment leads to a higher probability 

of sleeping now.

(E) Emission matrix
Look Write Sleep

U 0.6 0.35 0.05
T 0.9 0.1 0
L 0.1 0.6 0.3

U: Understands
T: Tries to understand
L: Lost
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1st Order HMM
• To accommodate the correlation between the adjacent symbols, 

the emission matrix needs to be expanded. 
• The emission matrix becomes Pr(Si |Pi,Si-1).

? ? ? ? ? ? ? ? ? ? ? ? ? ?

iphone
- - 0¥ Keep.

☐→D
L t

ago000000
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1st Order HMM
• Before

• Now

• To find the path P to maximize, we let D[k,p] be the maximum
probability obtained by the first k states ending at p. We can
obtain the following recurrence relation similarly as before.

• We can still do dynamic programming.
! ", $ = max

!!
! " − 1, $" Pr $|$" Pr .#|$, .#%&

Cranston emission

2nd order
-

different

-

→ prcsilpi.si-1,4-27
.
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Higher Order HMM 
• To generalize, we can let the current 

emission depend on the current state, 
and previous k symbols.

• Then this is called the k-th order HMM.
• Solving such a HMM is similar as before.  

Running time not changed.
• The only difficulty is the parameter 

training because the emission matrix has
many more parameters for larger k.
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Prokaryote Gene Finding
• The prokaryotes (pronounced /proʊˈkærioʊts/; singular 
prokaryote /proʊˈkæriət/) are a group of organisms 
that lack a cell nucleus (= karyon).
• The opposite is the eukaryotes. 

• Most of prokaryotes are unicellular.
• Prokaryote genes do not have introns.  So their genes is 

a linear structure.

http://www.youtube.com/watch?v=o0BQJbLNYSg
Intron video:

✗

argote .prokaryote



From Gene to Protein (in Prokaryotes)

3’ 5’A C T A G T A C T A G A G C A T T C T A T A G

Transcription

translation

5’ 3’T G A T C A T G A T C T C G T A A G A T A T C DNA

Coding strand

Template (noncoding) strand

-

ah -

.
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Genetic code .
.
A
T
T
C
A
C
A
G
T
G
G
A
.
.

I

H

S

G

codons

43=64
codons



A Trivial Gene Finder
• Open Reading Frame (ORF) is a substring that 

• starts with a start codon 
• ends with a stop codon
• no stop codon in the middle

• If ORF is long, then likely it is a gene or a part of a gene.
• Why?

24

ATG… …TAA

…TAG
…TGA

start codon stop codon 
no stop codon in middle

e.9 .

500 codons in an ORF .

% stop
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Codon bias
• A codon XYZ occurs with different 

frequencies in coding regions and non-
coding regions
• different amino acids have different freq.
• Diff. codons for the same amino acid have diff. 

freq.
• In random regions approx. p(X)*p(Y)*p(Z)


