
1

Seeding Methods in Homology Search

2

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC
|| ||||| | ||| |||| || |||||||||||||||||| | |||||||| | | |||||
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

GAGTACTCAACACCAACATTGATGGGCAATGGAAAATAGCCTTCGCCATCACACCATTAAGGGTGA----
|| ||||||||| |||||| | ||||| |||||||| ||| |||||||| | | | ||
GAATACTCAACAGCAACATCAACGGGCAGCAGAAAATAGGCTTTGCCATCACTGCCATTAAGGATGTGGG

------------------TGTTGAGGAAAGCAGACATTGACCTCACCGAGAGGGCAGGCGAGCTCAGGTA
||||||||||||| ||| ||||||||||| || ||||||| || |||| |

TTGACAGTACACTCATAGTGTTGAGGAAAGCTGACGTTGACCTCACCAAGTGGGCAGGAGAACTCACTGA

GGATGAGGTGGAGCATATGATCACCATCATACAGAACTCAC-------CAAGATTCCAGACTGGTTCTTG
||||||| |||| | | |||| ||||| || ||||| || |||||| |||||||||||||||
GGATGAGATGGAACGTGTGATGACCATTATGCAGAATCCATGCCAGTACAAGATCCCAGACTGGTTCTTG

A similarity between mouse and human
genomes

Smith-Waterman is the most accurate method.
Time complexity：O(mn).

3

Smith-Waterman Algorithm
S

T

• The old algorithm requires O(mn) and is too slow.
• Human v.s. mouse: 3x109x3x109=9x1018

4

Similarity Search

sequence 1

sequence 2

1 m

1 n

• Most similarities (local alignments) are very short relative
to the genomes.

5

Similarity Search

sequence 1

sequence 2

1 m

1 n

• For every pairs of (i, j), build a local alignment around it.
• O(mnT)
• Not better than Smith-Waterman.

• But this leads to an important idea…

6

Main Idea
• Most pairs of (i, j) are useless. We only want to try local alignments on

the “promising” pairs of (i, j).
• In the context of sequence similarity search in bioinformatics, these

“promising” pairs are called “seeds” or “hits”.
• We need
• a proper definition of hits.
• some efficient way to enumerate the hits faster than trying every pair of (i, j).

7

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC
|| ||||| | ||| |||| || |||||||||||||||||| | |||||||| | | |||||
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

BLAST Uses Short Consecutive Match as Hits

seq1

seq2

1 m

1 n

8

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC
|| ||||| | ||| |||| || |||||||||||||||||| | |||||||| | | |||||
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

BLAST Uses Short Consecutive Match as Hits

seq1

seq2

1 m

1 n

• Majority of (i,j) are random and probability of generating a
random hit is small.
• For length-k seed, time complexity becomes O(4-kmnT)
• By default, BLAST used k=11.
• What’s the speed up factor for k=11?

9

The Idea behind Seeding
• A true similarity has a high chance of being hit.
• A random pair (i, j) has low chance of being hit.
• Thus, if we use hit to filter (i, j), we will
• Detect most true similarities.
• Not wasting time on random pairs of (i, j).

10

The Data Structure for Finding Hit?
• for each k-mer, index table to remember all its occurrences in S.
• for each k-mer of T, find its hits in the index table.
• The index table can be a trie or a hash table.

AA
AC
AG
AT
CA

AATCTTAA
01234567

0, 6

1

CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

2

3

4

5

GAACTTA

S:

T:

11

The Data Structure for Finding Hit?

AAA
AAC
AAG
AAT
ACA

….

List of occurrences of AAA in S

….

….

Space complexity?

List of occurrences of AAC in S

12

Overall runtime
• Build the index using S: O(n) time.
• Find matches between the index and sequence T: O(m) time to scan T,

plus we need to examine all of the N hits found. Let t be the
examination time. Then
O(m+Nt).

• Overall runtime: O(n+m+Nt).
• The term Nt is the most expensive part. Indexing overhead is small.
• In practice, most of the hits encountered are random hits.

13

Filtration can have multiple rounds

• After finding a hit, instead of trying to build a local alignment
directly, BLAST uses another round of filtration to determine if
a hit is a “good” or “bad” hit.

• Quick search in both directions; if most symbols match, it’s a
good hit. Otherwise it’s bad.
• More precisely, use ungapped extension to find HSPs.

• If an HSP is above a certain score threshold, build a local
alignment around it.

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC
| | | || || ||||||||||| |||||| | ||| | | |||||

TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

14

HSP extension

for k from 0 to …
score += sc(S[i+k],T[j+k])

for k from 1 to …
score += sc(S[i-k],T[j-k])

• But when to stop?
• Score will increase and decrease during the extension.
• Extension stops when drop off greater than threshold.

score

extension length
dropoff

best score

dropoff > threshold

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC
| | | || || ||||||||||| |||||| | ||| | | |||||

TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

15

HSP Extension
• How long will the extension continue after reaching best score?
• Assumptions:
• After reaching best score, sequence becomes random.
• match=1 and mismatch=-1

• Expected score on each additional base is -0.5.
• If dropoff=k, then after 2k bases, the expected dropoff will reach k.
• Conclusion: Not too long.

16

Example of missing a target

• Fail:
GAGTACTCAACACCAACATTAGTGGGCAATGGAAAAT
|| ||||||||| |||||| | |||||| ||||||
GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT

• Dilemma
• Sensitivity – needs shorter seeds

• the success rate of finding a homology
• Speed – needs longer seeds

• Mega-BLAST uses seeds of length 28.

17

PatternHunter uses “spaced seeds”
• 111*1**1*1**11*111 (called a spaced seed)

• Eleven required matches (weight=11, length = 18)
• Seven “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…
|| ||||||||| ||||| || ||||| ||||||
GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…

111*1**1*1**11*111

• Hit = all the required matches are satisfied.
• BLAST’s seed = 11111111111

18

Notes about the notation
• A homology/similarity region’s actual sequences do not matter, the

match/mismatch matters.
• Therefore, a region is often denoted by a binary 0-1 sequence,
11011111001110111011111

• A hit is then as follows:
• 11011111001110111011111
• 111*1**1*1**11*111

19

The Data Structure for Finding Hit
• The same as consecutive seed. Except that now we

have a length l, weight w seed. E.g. 11*1.
• Each l-mer, take the w letters out and put in index table.

• The index table can be a hash table.

AAA
AAC
AAG
AAT
ACA

….

List of occurrences of AA?A in S
….

….

AA?A
11*1

20

Time Complexity Comparison
• Lemma: for random sequence S and T with lengths m and n, the expected number

of hits for weight w, length l seed is

• Because usually 𝑙 is much shorter than S and T, this is approximately 4!"𝑚𝑛
• That is, the expected number of hits in random regions only depends on the

weight, but not the shape of the seed. So does the running time.
• So, speed-wise, spaced seed is similar to consecutive seed.
• What about the sensitivity?

wlnlm -+-+- 4)1)(1(

21

Simulated sensitivity curves

22

Why spaced seeds are better?

TTGACCTCACC?
|||||||||||?
TTGACCTCACC?
11111111111
11111111111

CAA?A??A?C??TA?TGG?
|||?|??|?|??||?|||?
CAA?A??A?C??TA?TGG?
111*1**1*1**11*111
111*1**1*1**11*111

• BLAST’s seed usually uses more than one hits to
detect one homology (redundant)
• Spaced seeds uses fewer hits to detect one
homology (efficient)

23

24

PH’s seed does not overlap much
• PH’s seed do not overlap heavily when shifts:
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
......

• The hits at different positions are independent.
• The probability of having the second hit is 3*p6 + …

• compare to BLAST’s seed p + p2 + p3 + p4 + …

25

Lossless Filtration

• When seeds are short enough and HSP similarity is high
enough, lossless filtration is also possible.

• For example, seed 111 can guarantee to match when a
sufficiently long HSP has similarity 66.7%.

• Proof: To fail being hit by 111, the HSP must have a
mismatch in every 3 adjacent positions.

• On the other hand, 110110110…, which has 66.6% similarity,
will fail the seed 111.

26

Lossless Filtration

• Now consider spaced seed 11*1.
• Claim: For any 𝜖 > 0, seed 11*1 will hit every sufficiently

long region with similarity 0.6 + 𝜖.

27

Proof
• Suppose there is a sufficiently long region not hit by 11*1.
• We can break the region into blocks of 1a0b. Besides the last block that

can have at most three 1s, each of the other blocks is one of the
following three cases:
• 10b for b>=1
• 110b for b>=2
• 1110b for b>=2

• In each block, similarity <= 0.6.
• So the long region’s similarity is < 0.6 + 𝜖.

28

Compute a Seed’s Sensitivity

• R: A probabilistic distribution of HSP, Pr(R[i]=1) = p;
• We want Pr(length-n R is hit by a seed x). |x|=k
• s: A length-k 0-1 string.
• Rs: The concatenation of R and s.
• Let 𝐷[𝑖, 𝑠] be the probability Rs is hit by x for a length-i R.

• By total probability law, answer is ∑# 𝑝 𝑠 ⋅ 𝐷 𝑛 − 𝑘, 𝑠 . Note the
summation is over all length k binary string s, and 𝑝 𝑠 = 𝑝#% &' #(
)

1 −
𝑝 #(&' #

R s
0101101

29

Dynamic Programming
• Case I: s is hit by x. Then 𝐷 𝑖, 𝑠 = 1.
• Case II: s is not hit by x:

R s

0101101

R’
0101101

R’ s
0101101

s
1 0

R’ is the length-(i-1) distribution. s’ is the length-(k-1) prefix of s.

probability p probability 1-p

𝐷 𝑖, 𝑠 = 𝑝 ⋅ 𝐷 𝑖 − 1,1𝑠) + 1 − 𝑝 ⋅ 𝐷[𝑖 − 1,0𝑠)]

30

Dynamic Programming
• Initialize D[0,s]
• For i from 1 to n
• for every binary string s
• if s is hit by x
• 𝐷[𝑖, 𝑠] = 1

• else
• 𝐷 𝑖, 𝑠 = 𝑝 ⋅ 𝐷 𝑖 − 1,1𝑠! + 1 − 𝑝 ⋅ 𝐷[𝑖 − 1,0𝑠!]

• Return ∑# 𝑝 𝑠 ⋅ 𝐷[𝑛 − 𝑘, 𝑠]

Here 𝑝 𝑠 = 𝑝#% &' # 1 − 𝑝 #(&' #.
Time complexity 𝑂 2*𝑛
More efficient algorithm exists (not lectured here). 𝑂 2#(&' #𝑛 .

31

The “algorithm” to select the optimal spaced seed

• Enumerate all spaced seeds with weight 11 and no
longer than 18, calculate the sensitivity of each, and
output the one with the highest sensitivity.

• This is the ONLY known algorithm that guarantees
the finding of optimal seed.

• Many heuristics exist to find suboptimal seeds.

32

Multiple Seeds – PatternHunter II:

33

Multiple Spaced Seeds

• Seeds with different shapes can detect different homologies.
• Some seeds may detect more homologies than others. This leads to the

use of optimized spaced seed.
• Can use several seeds simultaneously to hit more homologies

• Approaching 100% sensitive homology search

seed1 seed2

seed3

34

Multiple Seeds Example

111*11**1*11*1*111

1111***1***1**11*1*111

11**11*1**1*1***11*111

111*1***1111**1***11*1

(homology identity = 0.7, homology length=64)

• To use multiple seeds, one only
needs to search multile times with
different seeds, and combine results.
Of course, you can search with
them simultaneously.

• In either case, this slows down
approximately k times if k seeds are
used.

• Is it worth it? How does it compare
with using one shorter seed?

35

Simulated sensitivity curves:

• Solid curves: Multiple (1, 2, 4, 8, 16)
weight-12 spaced seeds.

• Dashed curves: Optimal spaced seeds
with weight = 11, 10, 9, 8.

• Typically, “Doubling the seed
number” gains better sensitivity than
“decreasing the weight by 1”.

One weight-12

Two weight-12

One weight-11

36

Seeding for Proteins - BLASTP
• With nucleotides, we’re requiring k positions with exact matches.

• For proteins, that’s not really reasonable: some amino acids mutate to
another one very often.

• So BLASTP looks for 3- or 4-letter protein sequences that are “very
close” to each other, and then builds matches from them.

• Where very close è total BLOSUM score in the short window is at
least +13 (or +11 for 3 mer).

37

Excercise
• For query RRR, threshold 11, what are the other 3-

mers that can generate hits?

38

How to implement that?
• With BLASTP:

• Build an automaton that reflects all string close to short strings in T (the short
sequence)

• Scan S (the longer sequence), looking for matches.

• We do not study the classic ways to match multiple patterns efficiently.
If interested, you can read at
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

39

A Simpler Way
• There is another way:
1) For every 3-mer, find all “neighboring” 3-mers that, score at least +11

(or whatever). Build these into a data structure NeighborList.
2) Build a hash table H for S of its 3-mers, just like for the nucleotide

case
3) For every 3-mer x in T, retrieve all neighbors from NeighborList. For

each neighbor, query H to find hits in S.
NeighborList is a small structure: there are only 8000 3-mers.

40

Which sequence to index?
• That’s actually a tough question.

• Here’s a typical scenario:
• S is the human genome (length n)
• P1 is a short protein sequence (length m1)
• P2 is another short sequence (length m2)

• If we’re smart, build an index for S, once, and then look up the short
sequences in it.

• Added time for P2 is more like O(m2), not O(n+m2).

41

More on indexing
• But memory is a concern:
• Indexing the human genome is expensive!
• Oh, wait. No, it isn’t, not anymore… you probably should index the

longer sequence.
• BLASTN (1990) indexes the query, not the database.
• BLAT (2000) indexes the database, not the query.

• BLASTP also indexes the query.

42

Extensions to this idea
• Two-hit BLAST:
• Require two seeds (probably shorter) that are nearer than k from each

other, and base the alignment on their enclosing box.
• Potentially even fewer false positives, but one has to use shorter seeds.

There’s quite a tradeoff here.

43

Wrap-up
• Local alignment slow when sequences are large
• Use 11 consecutive matches as hits

• How these hits are found efficiently
• What to do after hits are found

• Spaced seeds better
• How sensitivity is computed and how optimal seed is found
• How hits are found for spaced seed

• Multiple spaced seed.
• Protein seeds.
• Two hits.

