
Review : §
- k

① Filtration

② sensitivity us . speed
③ spaced seed better ' "

j÷ijn° "
i

kmer

€

prchitati) =p
"

→

j prchitatj > =p
"

I spaced seed . =É
i j
i s
00Its

Ii

prob (match) =p
prob(mismatch) =\ - p .

Expected number of hits in an Hsp .

23

24

PH’s seed does not overlap much
• PH’s seed do not overlap heavily when shifts:
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
......

• The hits at different positions are independent.
• The probability of having the second hit is 3*p6 + …

• compare to BLAST’s seed p + p2 + p3 + p4 + …

6
6

67
,

7

÷

25

Lossless Filtration

• When seeds are short enough and HSP similarity is high
enough, lossless filtration is also possible.

• For example, seed 111 can guarantee to match when a
sufficiently long HSP has similarity 66.7%.

• Proof: To fail being hit by 111, the HSP must have a
mismatch in every 3 adjacent positions.

• On the other hand, 110110110…, which has 66.6% similarity,
will fail the seed 111.

26

Lossless Filtration

• Now consider spaced seed 11*1.
• Claim: For any % > 0, seed 11*1 will hit every sufficiently

long region with similarity 0.6 + %.

1906

¥⇒
proof : Iaob then as } 11101GB

a-

a :3 ⇒ b. 32 identity £-7 £+5 lloiob
→

a=2 ⇒ b > 2 I -4
9=1 ⇒ b71 EI

27

Proof
• Suppose there is a sufficiently long region not hit by 11*1.
• We can break the region into blocks of 1a0b. Besides the last block that

can have at most three 1s, each of the other blocks is one of the
following three cases:
• 10b for b>=1
• 110b for b>=2
• 1110b for b>=2

• In each block, similarity <= 0.6.
• So the long region’s similarity is < 0.6 + %.

28

Compute a Seed’s Sensitivity

• R: A probabilistic distribution of HSP, Pr(R[i]=1) = p;
• We want Pr(length-n R is hit by a seed x). |x|=k
• s: A length-k 0-1 string.
• Rs: The concatenation of R and s.
• Let ![#, %] be the probability Rs is hit by x for a length-i R.

• By total probability law, answer is ∑# (% ⋅ ! * − ,, % . Note the
summation is over all length k binary string s, and (% = (#% &' #(
)

1 −
(#(&' #

R s
0101101

pc length
- n R is hit by X) .

Is
Dei ,D= Prcx hits Rs)

.

DEN - k,s]

n -k
-lst-k.R-n-n.se

,

•-÷
Rn -K

S
'
c- {0,13k

P(Rnc's hit)=IPGJ-PCRn-kiish.it?s'c-fqigk---zp#' " s
'

twins
'

a-p) • DIn-k.si?
S'E{aiyk

29

Dynamic Programming
• Case I: s is hit by x. Then) *, , = 1.
• Case II: s is not hit by x:

R s

0101101

R’
0101101

R’ s
0101101

s
1 0

R’ is the length-(i-1) distribution. s’ is the length-(k-1) prefix of s.

probability p probability 1-p

! #, % = (⋅ ! # − 1,1%) + 1 − (⋅ ![# − 1,0%)]

Diii i
☐ Ei-1,15] D. Ii -1,055

30

Dynamic Programming
• Initialize D[0,s]
• For i from 1 to n
• for every binary string s
• if s is hit by x
• ![#, %] = 1
• else
• ! #, % =) ⋅ ! # − 1,1%! + 1 −) ⋅ ![# − 1,0%!]
• Return ∑# (% ⋅ ![* − ,, %]

Here (% = (#% &' # 1 − (#(&' #.
Time complexity 3 2**
More efficient algorithm exists (not lectured here). 3 2#(&' #* .

n

with length K _%
DIN-Ks)

31

The “algorithm” to select the optimal spaced seed

• Enumerate all spaced seeds with weight 11 and no
longer than 18, calculate the sensitivity of each, and
output the one with the highest sensitivity.

• This is the ONLY known algorithm that guarantees
the finding of optimal seed.

• Many heuristics exist to find suboptimal seeds.

32

Multiple Seeds – PatternHunter II:

33

Multiple Spaced Seeds

• Seeds with different shapes can detect different homologies.
• Some seeds may detect more homologies than others. This leads to the

use of optimized spaced seed.
• Can use several seeds simultaneously to hit more homologies

• Approaching 100% sensitive homology search

seed1 seed2

seed3

34

Multiple Seeds Example

111*11**1*11*1*111
1111***1***1**11*1*111
11**11*1**1*1***11*111
111*1***1111**1***11*1

(homology identity = 0.7, homology length=64)

• To use multiple seeds, one only
needs to search multile times with
different seeds, and combine results.
Of course, you can search with
them simultaneously.

• In either case, this slows down
approximately k times if k seeds are
used.

• Is it worth it? How does it compare
with using one shorter seed?

35

Simulated sensitivity curves:

• Solid curves: Multiple (1, 2, 4, 8, 16)
weight-12 spaced seeds.

• Dashed curves: Optimal spaced seeds
with weight = 11, 10, 9, 8.

• Typically, “Doubling the seed
number” gains better sensitivity than
“decreasing the weight by 1”.

One weight-12

Two weight-12

One weight-11

36

Seeding for Proteins - BLASTP
• With nucleotides, we’re requiring k positions with exact matches.

• For proteins, that’s not really reasonable: some amino acids mutate to
another one very often.

• So BLASTP looks for 3- or 4-letter protein sequences that are “very
close” to each other, and then builds matches from them.

• Where very close è total BLOSUM score in the short window is at
least +13 (or +11 for 3 mer).

37

Excercise
• For query RRR, threshold 11, what are the other 3-

mers that can generate hits?

38

How to implement that?
• With BLASTP:

• Build an automaton that reflects all string close to short strings in T (the short
sequence)

• Scan S (the longer sequence), looking for matches.
• We do not study the classic ways to match multiple patterns efficiently.

If interested, you can read at
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

39

A Simpler Way
• There is another way:
1) For every 3-mer, find all “neighboring” 3-mers that, score at least +11

(or whatever). Build these into a data structure NeighborList.
2) Build a hash table H for S of its 3-mers, just like for the nucleotide

case
3) For every 3-mer x in T, retrieve all neighbors from NeighborList. For

each neighbor, query H to find hits in S.
NeighborList is a small structure: there are only 8000 3-mers.

