Revies:
Q Fi (tration
(2) Sensitivity v.s. speed
(3) spaced seed better.

$$
\begin{aligned}
& \operatorname{pr}\left(\text { hitat i) }=p^{w}\right. \\
& \operatorname{pr}\left(h_{i}+a t j^{\prime}\right)=p^{w}
\end{aligned}
$$

11*1 spaced seed.

Hsp

$$
\begin{aligned}
& \operatorname{prol}(\text { match })=p \\
& \operatorname{prob}(\text { misnath })=1-p .
\end{aligned}
$$

Expected number of hits is an HSP.

P P ©

T (O O

PH's seed does not overlap much

- PH's seed do not overlap heavily when shifts:

111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
$111 * 1 * * 1 * 1 * * 11 * 111$ 111*1**1*1**11*111

- The hits at different positions are independent.
- The probability of having the second hit is $3^{*} \mathrm{p}^{6}+\ldots$
- compare to BLAST's seed $\mathrm{p}+\mathrm{p}^{2}+\mathrm{p}^{3}+\mathrm{p}^{4}+\ldots$

Lossless Filtration

- When seeds are short enough and HSP similarity is high enough, lossless filtration is also possible.
- For example, seed 111 can guarantee to match when a sufficiently long HSP has similarity 66.7\%.
- Proof: To fail being hit by 111 , the HSP must have a mismatch in every 3 adjacent positions.
- On the other hand, 110110110..., which has 66.6% similarity, will fail the seed 111 .
- Now consider spaced seed $11 * 1$.
- Claim: For any $\epsilon>0$, seed $11 * 1$ will hit every sufficiently long region with similarity $0.6+\epsilon$.
proof:

$$
\begin{aligned}
& 1^{a} 0_{0} & \text { then } a \leq 3 \\
a=3 \Rightarrow b \geqslant 2 & \Rightarrow \text { identity } & \leqslant \frac{3}{5} \quad \frac{a}{a+b} \\
a=2 \Rightarrow b \geqslant 2 & & \leqslant \frac{2}{4} \\
a=1 \Rightarrow b \geqslant 1 & & \leqslant \frac{1}{2}
\end{aligned}
$$

Proof

- Suppose there is a sufficiently long region not hit by $11 * 1$.
- We can break the region into blocks of $1^{a} 0^{b}$. Besides the last block that can have at most three 1 s , each of the other blocks is one of the following three cases:
- 10^{b} for $\mathrm{b}>=1$
- 110^{b} for $b>=2$
- 1110^{b} for $\mathrm{b}>=2$
- In each block, similarity $<=0.6$.
- So the long region's similarity is $<0.6+\epsilon$.

Compute a Seed's Sensitivity

- R: A probabilistic distribution of $\operatorname{HSP}, \operatorname{Pr}(\mathrm{R}[\mathrm{i}]=1)=\mathrm{p}$;
- We want $\operatorname{Pr}($ length $-n R$ is hit by a seed $x) .|x|=k$
- s: A length-k 0-1 string.
- Rs: The concatenation of R and s .
- Let $D[i, s]$ be the probability Rs is hit by x for a length-i R .

- By total probability law, answer is $\sum_{s}(p(s) \cdot D[n-k, s])$. Note the summation is over all length k binary string s , and $p(s)=p^{\# 1 \text { in } s}(1-$ $p)^{\# 0 \text { in } s}$

$$
\begin{aligned}
& D[n-k, s] \\
& \underbrace{\sim_{R_{n-k}}^{n-k}}_{R_{n-k}} \overbrace{s^{\prime}}^{\substack{n \mid=k}} \\
& S^{\prime} \in\{0,1\}^{k} \\
& P\left(R_{n} \text { is hit }\right)=\sum_{s^{\prime} \in\{0,1\}^{k}} P\left(s^{\prime}\right) \cdot P\left(R_{n-k} s^{\prime} \text { is hit } t^{\prime}\right) . \\
& =\sum_{s^{\prime} \in\{0,1\}^{k}} p^{\# 1 a s^{\prime}(1-p)^{\ddagger 0} \cdot n s^{\prime}} \cdot D\left[n-k, s^{\prime}\right] \text {. }
\end{aligned}
$$

Dynamic Programming

- Case I: s is hit by x . Then $D[i, s]=1$.
- Case II: s is not hit by x:

probability 1-p

R^{\prime} is the length-(i-1) distribution. s ' is the length-(k-1) prefix of s.

$$
D[i, s]=p \cdot D\left[i-1,1 s^{\prime}\right]+(1-p) \cdot D\left[i-1,0 s^{\prime}\right]
$$

Dynamic Programming

- Initialize $\mathrm{D}[0, \mathrm{~s}]$
- For i from 1 to n
- for every binary strings with length k

- if s is hit by x
- $D[i, s]=1$

$$
D[n-k, s]
$$

- else
- $\quad D[i, s]=p \cdot D\left[i-1,1 s^{\prime}\right]+(1-p) \cdot D\left[i-1,0 s^{\prime}\right]$
- Return $\sum_{s} p(s) \cdot D[n-k, s]$

Here $p(s)=p^{\# 1 \text { in } s}(1-p)^{\# 0 \text { in } s}$.
Time complexity $O\left(2^{k} n\right)$
More efficient algorithm exists (not lectured here). $O\left(2^{\# 0}\right.$ in $\left.s n\right)$.

The "algorithm" to select the optimal spaced seed

- Enumerate all spaced seeds with weight 11 and no longer than 18 , calculate the sensitivity of each, and output the one with the highest sensitivity.
- This is the ONLY known algorithm that guarantees the finding of optimal seed.
- Many heuristics exist to find suboptimal seeds.

Multiple Seeds - PatternHunter II:

Multiple Spaced Seeds

- Seeds with different shapes can detect different homologies.
- Some seeds may detect more homologies than others. This leads to the use of optimized spaced seed.
- Can use several seeds simultaneously to hit more homologies
- Approaching 100\% sensitive homology search

Multiple Seeds Example

(homology identity $=0.7$, homology length $=64$)
$111 * 11 * * 1 * 11 * 1 * 111$
$1111 * * * 1 * * * 1 * * 11 * 1 * 111$
$11 * * 11 * 1 * * 1 * 1 * * * 11 * 111$
$111 * 1 * * * 1111 * * 1 * * * 11 * 1$

- To use multiple seeds, one only needs to search multile times with different seeds, and combine results. Of course, you can search with them simultaneously.
- In either case, this slows down approximately k times if k seeds are used.
- Is it worth it? How does it compare with using one shorter seed?

Simulated sensitivity curves:

- Solid curves: Multiple (1, 2, 4, 8, 16) weight-12 spaced seeds.
- Dashed curves: Optimal spaced seeds with weight $=11,10,9,8$.
- Typically, "Doubling the seed number" gains better sensitivity than "decreasing the weight by 1 ".

Seeding for Proteins - BLASTP

- With nucleotides, we're requiring k positions with exact matches.
- For proteins, that's not really reasonable: some amino acids mutate to another one very often.
- So BLASTP looks for 3- or 4-letter protein sequences that are "very close" to each other, and then builds matches from them.
- Where very close \rightarrow total BLOSUM score in the short window is at least +13 (or +11 for 3 mer).

Excercise

- For query RRR, threshold 11, what are the other 3mers that can generate hits?

| | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
| :--- | ---: |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | 11 | 2 | -3 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |
| B | -2 | -1 | 3 | 4 | -3 | 0 | 1 | -1 | 0 | -3 | -4 | 0 | -3 | -3 | -2 | 0 | -1 | -4 | -3 | -3 |

How to implement that?

- With BLASTP:
- Build an automaton that reflects all string close to short strings in T (the short sequence)
- Scan S (the longer sequence), looking for matches.
- We do not study the classic ways to match multiple patterns efficiently. If interested, you can read at https://en.wikipedia.org/wiki/Aho $\% \mathrm{E} 2 \% 80 \%$ 93Corasick algorithm

A Simpler Way

- There is another way:

1) For every 3-mer, find all "neighboring" 3-mers that, score at least +11 (or whatever). Build these into a data structure NeighborList.
2) Build a hash table H for S of its 3-mers, just like for the nucleotide case
3) For every 3-mer x in T, retrieve all neighbors from NeighborList. For each neighbor, query H to find hits in S .

NeighborList is a small structure: there are only 8000 3-mers.

