Review:

* Local alignment:

* fit alignment:

* Linear space: Divide $\&$ conquer

Find j :

Algorithm: Cacalate $\operatorname{score}\left(S\left[1 . . \frac{m}{2}\right], T[1 . . j]\right)$ for all \dot{j}.

$$
D\left[\frac{m}{2}, j\right]
$$

caculate score ($S\left[\frac{m}{2}+\ldots m\right], T[j+1 \ldots n]$) for all j
Reverse

Score and Significance

Illustration

- Try BLAST the following protein: Note the scores,
- >pdb|6WPTID Chain D, S309 neutralizing antibody heavy chain QVQLVQSGAEVKKPGASVKVSCKASGYPFTSYGISWVRQAPGQGLEWMGWISTYNGNTNYAQKFQGRVTM TTDTSTTTGYMELRRLRSDDTAVYYCARDYTRGAWFGESLIGGFDNWGQGTLVTVSS
- See the description of this sequence at
https://www.ncbi.nlm.nih.gov/protein/6WPT D

Optimization Problem

- Instance: describes the input
- Feasible Solution: describes the format of the output
- Score Function: measures how good a solution is
- Objective: either maximize or minimize the score.
E.g. Sequence Alignment
- Instance: two sequences S and T
- Feasible Solution: insert gaps into S and T so that they have the same length
- Score Function: add up the score of each column
- Objective: to maximize the score

Purposes of the Score

- Purpose 1: It helps us to compare solutions of the same instance.
- Which alignment is the best for the same input (s, t).
- Purpose 2: It helps us to compare solutions of different instances.
- Which of (s, t) and (x, y) is more likely to be a homology?
- Purpose 3: It helps us to tell how significant the solution is.
- Does the alignment between s and t indicate that they are homologous?

Which solution is better? - same instance.

PURPOSE 1

Purpose 1

- We first examine how the scoring function is designed for the first purpose - compare two alignments and tell which one is better.
- Recall that what we really want is to find out homologies.

An Simple Evolutionary Model

- We first need an (simplified/oversimplified) evolution model:
- Only substitution and indel
- Two mutations do not overlap
- Guarantee that all evolutionary information but the order is represented by the alignment.
- Along the path of evolution, p : unchanged, q : substitution, r : indel. $(\mathrm{p}+\mathrm{q}+\mathrm{r}=1)$
- ATGCA-TGTA
(S)
||| | | |
ATGTACTG-A

Probability of the Alignment

- Under this model, the probability of the alignment is:

$$
\text { - } \mathrm{p}^{7 *} \mathrm{q}^{*} \mathrm{r}^{2}
$$

- We want to maximize this probability
- $\log \left(\mathrm{p}^{7} * \mathrm{q} * \mathrm{r}^{2}\right)=7 \log \mathrm{p}+\log \mathrm{q}+2 \log \mathrm{r}$
- Let match $=\log \mathrm{p}$, mismatch $=\log \mathrm{q}$, indel $=\log \mathrm{r}$. We get a scoring scheme.
- Maximizing the score is equivalent to maximizing the probability of evolutionary history.

Simple Score

- This is sufficient to compare the alignments of the same two sequences.
- Problems

- Always negative
- Local alignment becomes meaningless
- Repeating the alignment twice make the score lower.
- Useless in comparison of two alignments of different pairs of sequences.
- Question: Can these be solved by adding a minus sign?
- Next let us make this score better.

$$
\begin{aligned}
& \text { match }=1 \\
& \text { mismatch }=-1 \\
& \text { indel }=-1
\end{aligned}
$$

Which solution is better? - different instances.
PURPOSE 2

Likelihood Ratio

- Model 1 (homology): the alignment A between S and T reflects evolutionary history.
- Model 2 (random): the alignment A between S and T is merely a random event.
- We want to examine the likelihood ratio
- $\operatorname{Pr}($ alignment \mid homology $) / \operatorname{Pr}$ (alignment \mid random $)$
- If it's much bigger than 1 (such as 100000), it's evidence towards model one being the truth.
- If it's much below 1 (such as 0.00001), it's evidence towards model two being the truth.

Log likelihood Ratio

- Assume for the homology and random models, we have established the probabilities for each column type:
- Match: p and p'
- Substitution: q and q '
- Indel: r and r^{\prime}
- For the following alignment,
- ATGCA-TGTA
||| | | |
ATGTACTG-A
- $\operatorname{Pr}($ alignment \mid homology $) / \operatorname{Pr}($ alignment \mid random $)=\left(\mathrm{p} / \mathrm{p}^{\prime}\right)^{7} *\left(\mathrm{q} / \mathrm{q}^{\prime}\right) *\left(\mathrm{r} / \mathrm{r}^{\prime}\right)^{2}$
- We usually take a logarithm. The sore becomes
- $7^{*} \log \left(p / p^{\prime}\right)+\log \left(q / q^{\prime}\right)+2 * \log \left(r / r^{\prime}\right)$.
- If this is very positive, then homology model explains the alignment better than random model. And vice versa.

This is a Better Scoring Scheme

- Score scheme prefers column types happens more often in the homology model than in the random model. Usually,
- $\mathrm{p}>\mathrm{p}$, therefore a matching column has a positive score

- $q<q^{\prime}$, therefore a mismatching column has a negative score
- $\mathrm{r}<\mathrm{r}^{\prime}$, therefore an indel column has a negative score.
- Avoids the problems we had when only probabilities (not the ratio) were used.
- Putting two positive alignments together increase the homology chance.
- Can compare two alignments with different lengths.
- This is indeed the scoring scheme we have seen and have used in practice (in BLAST etc.)

Statistics

- The probability values used in the homology and random models may be obtained by simple counting their frequencies in some "real" alignments and "random" alignments, respectively.
- Often, the statistics is only approximate and does not need to be precise. In particular, the "random" model often uses some (over)simplied values.
- For example: $\operatorname{Pr}($ indel $)=0.2, \operatorname{Pr}($ match $)=1 / 20 * 0.8, \operatorname{Pr}($ mismatch $)=19 / 20 *$ 0.8.

Substitution Matrix

- The non-indel columns can be further refined to have different scores for different pairs of letters.
- For each pair of letters a and b, assume the probability of seeing (a, b) in a column is $\mathrm{p}(\mathrm{a}, \mathrm{b})$ for the homology model, and is $\mathrm{q}(\mathrm{a}, \mathrm{b})$ for the random model. $=\operatorname{Pr}(a, b \mid$ nomolosy $) \quad=\operatorname{Pr}(a, b \mid$ random $)$
- Then substitution score is then $\log (\mathrm{p}(\mathrm{a}, \mathrm{b}) / \mathrm{q}(\mathrm{a}, \mathrm{b}))$.
- This is called a substitution matrix.
- Let us assume that $\mathrm{q}(\mathrm{a}, \mathrm{b})=\mathrm{p}(\mathrm{a})^{*} \mathrm{p}(\mathrm{b})$. Here $\mathrm{p}(\mathrm{a})$ is the frequency of letter a in the sequences. Note that this is an (over)-simplification. But it provides "good enough" values in practice.

Substitution Matrix

- The substitution matrix is particularly important when aligning protein sequences because
- there are 20 amino acids
- some of them share significant similarities
- protein alignments have fewer matching columns.

Alignment of Protein Sequences

Conserved domain database 22426
KOG4652, HORMA domain [Chromatin structure and dynamics]
Conserved domain length $=324$ residues, 100% aligned
CT46 15 VFPNKISTEHQSLVLVKRLLAVSVSCITYLRGIFPECAYGTRYLD -DLCVKILREDKNCPG--STQLVKWMLGC

CT46 85 YDALOKKYLRMVVLAVYTNPEDPQTISECYQFKFKYTNNGPLMDFISKN------QSNESSMLSTD-TKKASILL

+ DA+++K L+ + L V T EDP+ I E Y F FY G + I+ ++ E S LS D T++ I
33 HDAIRQKLLKKLSL-VITESEDPEDI-EVYIFSFVYDEEGSVSARINYGINGQSSKAFELSQLSMDDTRRQFAKL
CT46 154 IRKIYILMQNLGPLPNDVCLTMKLFYYDEVTPPDYYPPPGFKDGDCEGVIFEGEPMYLNVGEVSTPFHIFKVKVTT KOG4652

CT46
KOG4652
CT4 6
KOG4652
T46
376 SSQESVPKRRI REPKH

Homology between CT46 and MGC26710 hypothetical protein

Identities $=136 / 249$ (54\%), with conservative changes $=180 / 249$ (72\%)

CT46 1 MATAQLQR----TPMSALVFPNKISTEHQSLVLVKRLLAVSVSCITYLRGIFPECAYGTRYLDDLCVKILREDK MGC26710 1 MATAQLSHCITIHKASKETVFPSQITNEHESLKMVKKLFATSISCITYLRGLFPESSYGERHLDDLSLKILREDK
-
MGC26710
CT46
MGC26710
CT46
MGC26710

CT46 71 NCPGSTQLVKWMLGCYDALQKKYLRMVVLAVYTNPEDPQTISECYQFKFKYTNNGPLMDF--ISKNQSNESSMLS
71 NCPGSTQLVKWMLGCYDALQKKYLRMVVLAVYTNPEDPQTISECYQFKFKYTNNGPLMDF--ISNNQSNESSML
76 KCPGSLHIIRWIQGCFDALEKRYLRMAVLTLYTDPMGSEKVTEMYYFKFKYTKEGATMDFDSHSSSTSFESGTNN
144 TDTKKASILLIRKIYILMQNLGPLPNDVCLTMKLFYYDEVTPPDYQPPGFKDG-DCEGVIFEGEPMYLNVGEVST 144 TDTKKASILLIRKIYILMQNLGPLPNDVCLTMKLFYYDEVTPPDYQPPGFKDG-DCEGVIFEGEPMYLNVGEVST

218 PFHIFKVKVTTERERMENIDSTIL 24
FH KVKV TE ++++++
6 GFHSMKVKVMTEATKVIDLENNLF
ungapped alngnment

Notice the blocks with no indel.

BLOSUM 62

$$
\begin{aligned}
& \mathrm{B}=\mathrm{D} \text { or } \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q }-1 \begin{array}{lllllllllllllllllllllll}
& 1 & 0 & 0 & -3 & 5 & 2 & -2 & 0 & -3 & -2 & 1 & 0 & -3 & -1 & 0 & -1 & -2 & -1 & -2 & 0 & 3 & -1 \\
-4
\end{array} \\
& \text { E -1 } 00 \text { 0 } 20-4 \begin{array}{lllllllllllllllllll}
& 2 & -2 & 0 & -3 & -3 & 1 & -2 & -3 & -1 & 0 & -1 & -3 & -2 & -2 & 1 & 4 & -1 & -4
\end{array} \\
& \text { G } 0 \text {-2 } 00-1 \begin{array}{llllllllllllllllllll}
& -3 & -2 & -2 & 6 & -2 & -4 & -4 & -2 & -3 & -3 & -2 & 0 & -2 & -2 & -3 & -3 & -1 & -2 & -1
\end{array}-4 \\
& \text { H }-20 \begin{array}{llllllllllllllllllllll}
& 1 & -1 & -3 & 0 & 0 & -2 & 8 & -3 & -3 & -1 & -2 & -1 & -2 & -1 & -2 & -2 & 2 & -3 & 0 & 0 & -1 \\
-4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { K }-1 \begin{array}{lllllllllllllllllllllll}
& 2 & 0 & -1 & -3 & 1 & 1 & -2 & -1 & -3 & -2 & 5 & -1 & -3 & -1 & 0 & -1 & -3 & -2 & -2 & 0 & 1 & -1 \\
-4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { S } \begin{array}{l}
1
\end{array}-1 \begin{array}{llllllllllllllllllllll}
& 1 & 0 & -1 & 0 & 0 & 0 & -1 & -2 & -2 & 0 & -1 & -2 & -1 & 4 & 1 & -3 & -2 & -2 & 0 & 0 & 0 \\
-4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { V } 0 \text {-3 }-3 \text {-3 }-1 \text {-2 }-2 \text {-3 }-3 \begin{array}{lllllllllllllll}
& 1 & -2 & 1 & -1 & -2 & -2 & 0 & -3 & -1 & 4 & -3 & -2 & -1 & -4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * }-4 \text {-4 }-4 \begin{array}{lllllllllllllllllllll}
& -4 \\
1
\end{array}
\end{aligned}
$$

The most used amino acid substitution matrix. Let's study how this is constructed.

Frequency of AA pairs

AVQRLPECVAKPLWNVSNDLGLKPVLTYGDVCLTNCR ACDTIPESVAAPLIKVSEALGLPPLATYAGLVLWNFC PAEVLPRNLALPFVEVSRNLGLPPILVHSDLVITNWT

- 37 columns, each column 3 pairs. In total 111 pairs.
- For example, the pair I-L occurs 3 times; the pair L-L occurs 13 times

$$
P_{I L}=\frac{3}{111}, P_{L L}=\frac{13}{111} \quad \text { Scree }(L, L)=2 \cdot \log _{2} \frac{P_{L L}}{P_{L} \cdot P_{L}}
$$

- Total amino acid 111 (a coincident).

$$
P_{I}=\frac{2}{111}, P_{L}=\frac{21}{111} \operatorname{sore}(I, L)=2 \log _{2} \frac{P_{I L}}{P_{I} \cdot P_{L}+P_{L} \cdot P_{I}}
$$

- We can then use log likelihood ratio to calculate scores.
- But we should correctly distinguish the counting when two letters are the same or different.

Blosum

$$
\begin{aligned}
& \operatorname{score}(x, y)=2 \log _{2} \frac{P_{x y}}{2 P_{x} P_{y}}, \text { if } x \neq y \\
& \operatorname{score}(x, x)=2 \log _{2} \frac{P_{x x}}{P_{x} P_{x}}
\end{aligned}
$$

In BLOSUM matrices these values are rounded to the nearest integer.

