Local Alignment and Linear Space

 Alignment
Myoglobin Genes of Mouse and Human

[^0]
Interesting Fact

- Human and mouse share big blocks on their genomes.
- Figure shows relation between chromosome X of mouse and human.
- Each colored block is relatively conserved, but different in orders and orientations.
- Seven inversions are required to put them in the correct order and orientation. This is called "sorting by reversals".

Mouse, Human, Chimpanzee

Chimpanzee to Human

Local Alignment

- Conserved regions are "local" to the genome/chromosome. But previous alignment is "global".
- We need a model to define "local" similarity.

Local Alignment

- Given: two sequences S and T
- Find: substrings of S and T that maximizes the alignment score.
- AATTAG-CCGATGAC
- |। | ।।।
- TGGAGGCTGATATA
- I.e., The indels at the beginning and end of the two strings are free.

Local Alignment

- Local alignment score is at least 0 .
- The model only makes sense for alignment but not edit distance nor LCS.
- Question: Is the optimal local alignment a local part of an optimal "global" alignment?

Warm-up: Prefix alignment

What if we want to find the highest-scoring alignment between two prefixes of the two sequences.

- CATTC
- ATTGA

$$
\begin{aligned}
& \text { Match=1 } \\
& \text { Mismatch=-1 } \\
& \text { Indel=-1 }
\end{aligned}
$$

		C	A	T	T	C
	0	-1	-2	-3	-4	-5
A	-1	-1	0	-1	-2	-3
T	-2	-2	-1	1	0	-1
T	-3	-3	-2	0	2	1
G	-4	-4	-3	-1	1	1
A	-5	-5	-3	-2	0	0

Warm-up: "suffix alignment"

- Suppose we only get the "free" deletions at the prefixes of the alignment.
- AATTAG-CCGAT
- || | । |
- TGGAGGCTGAT
- That is, we choose two suffixes, and align them together optimally.

Last column

- Let $\mathrm{D}[\mathrm{i}, \mathrm{j}]$ denote the optimal "suffix alignment" alignment score of $\mathrm{s}[1 . . \mathrm{i}], \mathrm{t}[1 . . \mathrm{i}]$.
- That is, $D[i, j]$ is the maximum alignment score for $s[i ' . . i]$ and $t[j$ '.. $]$] for all i ' and j '.
- Consider the last column of this optimal "suffix" alignment. Four cases arise:

Case 1: s[i] v.s. t[j]
Case 2: s[i] v.s. -
Case 3: t[j] v.s. -
Case 4: an empty alignment

- Case 4 is the only new case comparing to the basic alignment.

DP algorithm for "suffix alignment"

$$
\mathrm{D}[\mathrm{i}, \mathrm{j}]=\max \left\{\begin{array}{l}
\mathrm{D}[\mathrm{i}-1, \mathrm{j}-1]+\mathrm{f}(\mathrm{~s}[\mathrm{i}], \mathrm{t}[\mathrm{j}]) ; \\
\mathrm{D}[\mathrm{i}-1, \mathrm{j}]+\mathrm{f}(\mathrm{~s}[\mathrm{i}],-) ; \\
\mathrm{D}[\mathrm{i}, \mathrm{j}-1]+\mathrm{f}(-, \mathrm{s}[\mathrm{j}]) ; \\
0
\end{array}\right.
$$

0	0	0	0	0	0		
0							
0							
0							
0							
0						\quad	Answer will be here
:---							
How to backtrace?							

Suffix Alignment Example

			C	A	T	T	C
		0	0	0	0	0	0
	A	0	0	1.	0	0	0
Match=1	T	0	0	0	2	1	0
$\begin{aligned} & \text { Mismatch=-1 } \\ & \text { Indel=-1 } \end{aligned}$	T	0	0	0	1	3	2
	G	0	0	0	0	2	2
	A	0	0	0	0	1	1

Local Alignment

- Recall that for suffix alignment, $\mathrm{D}[i, j]$ denote the optimal "suffix alignment" alignment score of $\mathrm{s}[1 . . \mathrm{i}], \mathrm{t}[1 . . \mathrm{i}]$. I.e., $\mathrm{D}[\mathrm{i}, \mathrm{j}]$ is the maximum alignment score for $s\left[i^{\prime} . . i\right]$ and $t[j$ '.. $]$] for all i' and j '.
- Therefore, optimal local alignment score is just $\max _{\mathrm{i}, \mathrm{j}} \mathrm{D}[\mathrm{i}, \mathrm{j}]$.
- Algorithm:
- Fill the dynamic progrmaming table is the same as suffix alignment.
- Find (i, j) to maximize $\mathrm{D}[\mathrm{i}, \mathrm{j}]$, and backtrack from there.

Local Alignment Example

			C	A	T	T	C
		0	0 ,	0	0	0	0
	A	0	0	1.	0	0	0
Match=1	T	0	0	0	2	1	0
$\begin{aligned} & \text { Mismatch=-1 } \\ & \text { Indel=-1 } \end{aligned}$	T	0	0	0	1	3	2
	G	0	0	0	0	2	2
	A	0	0	0	0	1	1

A Little History

- The algorithm was first proposed by Temple Smith and Michael Waterman in 1981. It works for both linear and affined gap penalty.
- It is known popularly as the Smith-Waterman algorithm.
- The global alignment algorithm was called the Needleman-Wunsch algorithm, which was published in 1970.

Temple Smith and Michael Waterman. (1981) "Identification of common molecular subsequences." Journal of molecular biology 147(1): 195-197.

Saul Needleman and Christian Wunsch. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of Molecular Biology. 48(3): 443-53.

Space Saving

- Space complexity is $\mathrm{O}(\mathrm{mn})$.
- What if we only want the score?
- And the end positions?
- And the start positions?

	0	0	0	0	0	0
A	0	0	1	0	0	0
T	0	0	0	2	1	0
T	0	0	0	1	3	2
G	0	0	0	0	2	2
	0	0	0	0	1	1

Affine Gap Local Alignment

- Algorithm is as before, except that score is now lower bounded by 0 .
- Afterward, find maximum element in all 3 tables, and backtrack until reaching a 0 .

Compute Many Local Alignments

- It's sometimes useful to find many local alignments of S and T. E.g. when there are multiple similar regions between the two input strings.
- How?
- Time complexity?

Local Alignment

		G	C	C	C	T	A	G	C	G
	0	0	0	0	0	0	0	0	0	0
G	0	1	0	0	0	0	0	1	0	1
C	0	0	2	1	1	0	0	0	2	0
G	0	1	0	1	0	0	0	1	0	3
C	0	0	2	1	2	0	0	0	2	1
A	0	0	0	1	0	1	1	0	0	1
A	0	0	0	0	0	0	2	0	0	0
T	0	0	0	0	0	1	0	1	0	0
G	0	1	0	0	0	0	0	1	0	1

Fit Alignment

- Given sequence S and T. Find a global alignment between S and a substring of T , maximizing the alignment score.

- Deleting the prefix of T is free, deleting the suffix of T is free.
- How?
- Time Complexity?

Linear Space Alignment

- Why linear space?
- Computer RAM used to be very expensive in 80 s.
- "Prediction: The cost for 128 kilobytes of memory will fall below $\mathrm{U} \$ 100$ in the near future."
- Creative Computing magazine. December 1981, page 6.
- Even today, keeping everything in the L2 cache may speed up the computation.
- We have learned the linear space if only alignment score, instead of the alignment, is required.
- Let's now develop a linear space alignment. We focus on global alignment model first.

Divide and Conquer

- We want to find j such that the optimal alignment between S and T consists of two parts
- $\mathrm{S}[1 . . \mathrm{m} / 2]$ aligns with $\mathrm{T}[1 . . \mathrm{j}]$
- $\mathrm{S}[\mathrm{m} / 2+1 . . \mathrm{m}]$ aligns with $T[j+1 . . \mathrm{n}]$

- Then we can use divide and conquer.
- However, we need to comptue j in linear space.
- Note that there may be more than one j satisfying the condition. Any one of them will do the job.

Divide and Conquer

$$
\begin{array}{l|l}
\mathrm{S} & \mathrm{~S}[1 . . \mathrm{m} / 2] \\
\hline & S[\mathrm{~m} / 2+1 . . \mathrm{m}] \\
\hline \mathrm{T} & \\
\hline \mathrm{~T}[1 . . \mathrm{j}] & T[j+1 . . \mathrm{n}]
\end{array}
$$

- Claim: j satisfies the desired condition iff it maximizes alignScore $(\mathrm{S}[1 . . \mathrm{m} / 2], \mathrm{T}[1 . . \mathrm{j}])+$ alignScore $(S[m / 2+1 . . \mathrm{m}], T[j+1, \mathrm{n}])$
- Let D be the dynamic programming table for aligning S and T , where do we find alignScore $(\mathrm{S}[1 . . \mathrm{m} / 2], \mathrm{T}[1 . . \mathrm{j}])$ for every j ?
- How about alignScore($\mathrm{S}[\mathrm{m} / 2+1 . . \mathrm{m}], \mathrm{T}[\mathrm{j}+1, \mathrm{n}])$?

Divide

Computing the two center columns requires linear space.

Algorithm

Algorithm Align(S,T):

1. If $|S|=1$, return a trivial alignment.
2. Use the previous idea to find j that maximizes alignScore $(\mathrm{S}[1 . . \mathrm{m} / 2]$, $\mathrm{T}[1 . . \mathrm{j}])+\operatorname{alignScore}(\mathrm{S}[\mathrm{m} / 2 . . \mathrm{m}], \mathrm{T}[\mathrm{j}+1 . . \mathrm{n}])$
3. Concatenate $\operatorname{Align}(S[1 . . \mathrm{m} / 2], T[1 . . j])$ and $\operatorname{Align}(S[m / 2 . . m], T[j+1 . . n])$ and return it.

Time Complexity

- $\mathrm{T}(\mathrm{m}, \mathrm{n}) \leq \mathrm{mn}+\mathrm{T}(\mathrm{m} / 2, \mathrm{j})+\mathrm{T}(\mathrm{m} / 2, \mathrm{n}-\mathrm{j}) \leq 2 \mathrm{mn}$

Programming	G. Manacher
Techniques	Editor

A Linear Space Algorithm for Computing Maximal CommonSubsequences

D.S. Hirschberg
Princeton University

The problem of finding a longest common subsequence of two strings has been solved in quadratic time and space. An algorithm is presented which will solve this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

Linear Space Affine Gap Penalty

CABIOS
Optimal alignments in linear space

Eugene W.Myers ${ }^{1,2}$ and Webb Miller ${ }^{2}$

Abstract

Space, not time, is often the limiting factor when computing optimal sequence alignments, and a number of recent paper in the biology literature have proposed space-saving strategie. However, a 1975 computer science paper by Hirschber presented a method that is superior to the new proposals, bot in theory and in practice. The goal of this paper is to give Hirschberg's idea the visibility it deserves by developing linear-space version of Gotoh's algorithm, which accommodates affine gap penalties. A portable C-software package implement ing this algorithm is available on the BIONET free of charge
where $\sigma_{m}=\max _{\text {en }} \sigma(a, b)$ (Smith et al., 1981). Thus, to produce an alignment that maximizes the similarity score, fir apply these transformations and then run the program describ ed in this paper with the resulting w, g and h. If the minimum conversion score is C, then the corresponding maximum align ment score is $1 / 2(M+N) \sigma_{\max }-C$
Gotoh (1982) gave an algorith that solves such problem in $O(M N)$ time. If only the minimum cost is desired, then it is easy to implement the algorithm in $O(N)$ space, where N can be taken as the shorter sequence length. If one also desires set of operations attaining the minimum cost, then straightfor set of operations attaining the minimum cost, then straightfor-
ward imnlementations need O IMN snace In nractice thic enare
"The goal of this paper is to give
 Hirschberg's idea the visibility it deserves by developing a linear-space version of Gotoh's algorithm."

Question

How to do local alignment in linear space?
How to do affined gap penalty in linear space?

[^0]: NM_013593.3 Mus musculus myoglobin (Mb), transcript variant 2, mRNA
 TCGGGAACTGTTTTAGAAACAGAACATCATCTTCAACATCCAGAGGACTGTCATCCTTGTCCCTGTGGGT
 CCAGAAGCCACCATGGGGCTCAGTGATGGGGAGTGGCAGCTGGTGCTGAATGTCTGGGGGAAGGTGGAGG CCGACCTTGCTGGCCATGGACAGGAAGTCCTCATCGGTCTGTTTAAGACTCACCCTGAGACCCTGGATAA GTTTGACAAGTTCAAGAACTTGAAGTCAGAGGAAGATATGAAGGGCTCAGAGGACCTGAAGAAGCATGGT TGCACCGTGCTCACAGCCCTGGGTACCATCCTGAAGAAGAAGGGACAACATGCTGCCGAGATCCAGCCTC TAGCCCAATCACACGCCACCAAGCACAAGATCCCGGTCAAGTACCTGGAGTTTATCTCAGAAATTATCAT TGAAGTCCTGAAGAAGAGACATTCCGGGGACTTTGGAGCAGATGCTCAGGGCGCCATGAGCAAGGCCCTG GAGCTCTTCCGGAATGACATTGCCGCCAAGTACAAGGAGCTAGGCTTCCAGGGCTGAGCCATGGGCTCCC aCTGTCCAGCCCACCAAGCTGGGACCCAGTGTTGTGTAGCAAGTAGCGTGTGCAGTGTTCTAGGTTAGCA GAGAACAGAAGAGGGGAGCATAGTGTGGCATCCACCCACACCCCTGGGGACAGGGCTCTGGGCAGTGTTA CCCTGGAGCCCAGAGGTGCAAAGTGGCCTTCGTCAGCTCTGCCGGGTCATGCTCAGGTCTCCTAAGTCCC AGTCCATTTTCTTCTGGTTTTGGGAAAATCTCTTTTCCACTGTCACATTTGACCCCAAATCCAAGTCACT GACTAGCAGACCCTGACCTTTGGGCGAGATGGAGGGTTGCTTAGAGGGAGTGGAGGGTGAAAACGGGGCG GTGAGCATCAAGTCTCCCACTGCTCAGCTTCCCGTTGACCCACCTTGTCTCAATAAAATATCCTGCGAGT CCTCAAAAAAAAAAAAAAA

 NM_005368.3 Homo sapiens myoglobin (MB), transcript variant 1, mRNA
 AAACCCCAGCTGTTGGGGCCAGGACACCCAGTGAGCCCATACTTGCTCTTTTTGTCTTCTTCAGACTGCG CATGGGGCTCAGCGACGGGGAATGGCAGTTGGTGCTGAACGTCTGGGGGAAGGTGGAGGCTGACATCCC agGCCATGGGCAGGAAGTCCTCATCAGGCTCTTTAAGGGTCACCCAGAGACTCTGGAGAAGTTTGACAAG TTCAAGCACCTGAAGTCAGAGGACGAGATGAAGGCGTCTGAGGACTTAAAGAAGCATGGTGCCACCGTGC TCACCGCCCTGGGTGGCATCCTTAAGAAGAAGGGGCATCATGAGGCAGAGATTAAGCCCCTGGCACAGTC GCATGCCACCAAGCACAAGATCCCCGTGAAGTACCTGGAGTTCATCTCGGAATGCATCATCCAGGTTCTG CAGAGCAAGCATCCCGGGGACTTTGGTGCTGATGCCCAGGGGGCCATGAACAAGGCCCTGGAGCTGTTCC GGAAGGACATGGCCTCCAACTACAAGGAGCTGGGCTTCCAGGGCTAGGCCCCTGCCGCTCCCACCCCCAC CCATCTGGGCCCCGGGTTCAAGAGAGAGCGGGGTCTGATCTCGTGTAGCCATATAGAGTTTGCTTCTGAG TGTCTGCTTTGTTTAGTAGAGGTGGGCAGGAGGAGCTGAGGGGCTGGGGCTGGGGTGTTGAAGTTGGCTI TGCATGCCCAGCGATGCGCCTCCCTGTGGGATGTCATCACCCTGGGAACCGGGAGTGGCCCTTGGCTCAC TGTGTTCTGCATGGTTTGGATCTGAATTAATTGTCCTTTCTTCTAAATCCCAACCGAACTTCTTCCAACC TCCAAACTGGCTGTAACCCCAAATCCAAGCCATTAACTACACCTGACAGTAGCAATTGTCTGATTAATCA CTGGCCCCTTGAAGACAGCAGAATGTCCCTTTGCAATGAGGAGGAGATCTGGGCTGGGCGGGCCAGCTGG GGAAGCATTTGACTATCTGGAACTTGTGTGTGCCTCCTCAGGTATGGCAGTGACTCACCTGGTTTTAATA aAACAACCTGCAACATCTCA

