
§¥

u
r

"

÷
:

*
If

{
i

÷i

§ .÷É¥÷÷÷÷÷÷÷±÷÷
.

t

÷

* ¥±÷÷
-
÷
:*

_÷i.jp?q.i

•
É

÷pp÷
g
in

in
•

u
r
-

E
T
E

-

÷ :P
¥

÷Eo
'¥0

*
⇒

-
in÷pµ÷É_±¥ur

.

÷or
¥

12

Suffix Alignment Example

C A T T C
0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 1 3 2

0 0 0 0 2 2

0 0 0 0 1 1

A

T

T

G

A

Match=1
Mismatch=-1
Indel=-1

T

ATT 4- A

0 c ☒ TTC
-

S I

÷

A

d- .

13

Local Alignment

• Recall that for suffix alignment, D[i,j] denote the optimal “suffix
alignment” alignment score of s[1..i], t[1..j]. I.e., D[i,j] is the
maximum alignment score for s[i’..i] and t[j’..j] for all i’ and j’.

• Therefore, optimal local alignment score is just maxi,j D[i,j].
• Algorithm:

• Fill the dynamic progrmaming table is the same as suffix alignment.
• Find (i,j) to maximize D[i,j], and backtrack from there.

⇐

s
" ii.I] =/I:p s-ecsci.is.TEji.jp .

T max
i. i

14

Local Alignment Example

C A T T C
0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 1 3 2

0 0 0 0 2 2

0 0 0 0 1 1

A

T

T

G

A

Match=1
Mismatch=-1
Indel=-1

'

*

15

A Little History

• The algorithm was first proposed by Temple Smith and Michael
Waterman in 1981. It works for both linear and affined gap penalty.

• It is known popularly as the Smith-Waterman algorithm.
• The global alignment algorithm was called the Needleman-Wunsch

algorithm, which was published in 1970.

Temple Smith and Michael Waterman. (1981) “Identification of
common molecular subsequences.” Journal of molecular
biology 147(1): 195-197.

Saul Needleman and Christian Wunsch. (1970). "A general
method applicable to the search for similarities in the amino acid
sequence of two proteins". Journal of Molecular Biology. 48(3):
443–53.

① base case

② case4 ,

= 0
.

③ maxi ,j

16

Space Saving

• Space complexity is O(mn).
• What if we only want the score?
• And the end positions?
• And the start positions?

C A T T C
0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 1 3 2

0 0 0 0 2 2

0 0 0 0 1 1

A

T

T

G

A

Dei.j]=(score , ii. j
'

) .

:÷→;

max sure

maxi
c.
É

mais
.

Maxi
'

t.TT maxj
'

17

D0[i-1, j-1];
D0[i,j] = f(s[i], t[j]) + max D1[i-1, j-1];

D2[i-1, j-1];
0

Affine Gap Local Alignment

D0[i-1, j] +gapopen;
D2[i,j] = gapext + max D1[i-1, j] + gapopen;

D2[i-1, j];
0

D0[i, j-1] + gapopen;
D1[i,j] = gapext + max D1[i, j-1];

D2[i, j-1] + gapopen;
0

• Algorithm is as before,
except that score is now
lower bounded by 0.

• Afterward, find
maximum element in all
3 tables, and backtrack
until reaching a 0.

18

Compute Many Local Alignments
• It’s sometimes useful to find many local alignments of S and T. E.g.

when there are multiple similar regions between the two input strings.
• How?
• Time complexity?

19

Local Alignment

g-
-

d

'

00

20

Fit Alignment
• Given sequence S and T. Find a global alignment between S and a

substring of T, maximizing the alignment score.

• Deleting the prefix of T is free, deleting the suffix of T is free.
• How?
• Time Complexity?

S
T ⇒

s local

-1?
☒ maxi .j

HIT
fit Maxj

21

Linear Space Alignment
• Why linear space?

• Computer RAM used to be very expensive in 80s.
• “Prediction: The cost for 128 kilobytes of memory will fall below U$100 in the near future.”

• Creative Computing magazine. December 1981, page 6.
• Even today, keeping everything in the L2 cache may speed up the computation.

• We have learned the linear space if only alignment score, instead of the alignment,
is required.

• Let’s now develop a linear space alignment. We focus on global alignment model
first.

22

Divide and Conquer
• We want to find j such that the

optimal alignment between S and T
consists of two parts
• S[1..m/2] aligns with T[1..j]
• S[m/2+1..m] aligns with T[j+1..n]

• Then we can use divide and conquer.
• However, we need to comptue j in

linear space.
• Note that there may be more than

one j satisfying the condition. Any
one of them will do the job.

S

T

S[1..m/2] S[m/2+1..m]

T[1..j] T[j+1..n]

23

Divide and Conquer

• Claim: j satisfies the desired condition iff it maximizes
alignScore(S[1..m/2],T[1..j]) +
alignScore(S[m/2+1..m],T[j+1,n])

• Let D be the dynamic programming table for aligning S and T,
where do we find alignScore(S[1..m/2],T[1..j]) for every j?

• How about alignScore(S[m/2+1..m],T[j+1,n])?

S

T

S[1..m/2] S[m/2+1..m]

T[1..j] T[j+1..n]
i.

for I -④ •

.

24

T C A

Divide

C A T
0 -1 -2 -3

A -1 -1 0 -1
T -2 -2 -1 1
T -3 -3 -2 0
G -4 -4 -3 -1
A -5 -5 -4 -2

Computing the two center
columns requires linear space.

-1 0 1 -5
0 -2 -2 -4
1 -1 -1 -3
-1 0 0 -2
-1 0 1 -1
-3 -2 -1 0

A
T
T
G
A

+

S[1..m/2]

T

S[m/2+1..m]

see .
.only

f
5 : CAT TCA

• i.

¥

25

Algorithm
Algorithm Align(S,T):
1. If |S| = 1, return a trivial alignment.
2. Use the previous idea to find j that maximizes alignScore(S[1..m/2],

T[1..j]) + alignScore(S[m/2..m], T[j+1..n])
3. Concatenate Align(S[1..m/2], T[1..j]) and Align(S[m/2..m], T[j+1..n])

and return it.

26

Time Complexity

• T(m,n) ≤ mn + T(m/2,j)+T(m/2,n-j)≤ 2 mn

j

m/2r m

mn+ + + . -
.

µ
/ £""

'

#¥¥¥¥/#
n

-0-
-
-

27

D.S. Hirschberg, A linear space algorithm for
computing longest common subsequences,
Comm. ACM 18 (1975) 341-343.

28

Linear Space Affine Gap Penalty

“The goal of this paper is to give
Hirschberg’s idea the visibility it
deserves by developing a linear-space
version of Gotoh’s algorithm.”

29

Question
How to do local alignment in linear space?
How to do affined gap penalty in linear space?2

reduction

