Review :
L Agine gop pensdy s (k) = axbbe DT 5]

2. prefic A/l/\jr/lf”JM mi"; DLL/Q] wheve DC"/jj; o ptemal
Q[A‘7nmp/nﬂc sowr of S[L1v] TLig]

=/ o~/
4‘/“H‘:X ‘\/t/"jﬂmﬂ/”/ﬁ?,‘ To C@,M/J;(/L‘(:L mﬂ“;\(/ §m(§[/\“m]/ (L\)V\?
A Qm(éﬂ{:j\’j/fgijj
)

DTy]
i
o
it cose L
weg _lé 0 I S 46’? 5T)
= W\l = -

Cr

N ")
A OTc~,30 +10dof
DT -)-) #1068, 559

|

\ D
{ ey oHunomk-

Co»‘;e/@‘ §

—_—

Suttix Alignhment

Hxample

Match=1
Mismatch=-1
Indel=-1

Cc A C

0 (0,0 [0 [0 |0
AN

A [0 jo |1 [0 |0 [0

T [0 [0 [0 [2 |1 |o

+ 1o jo fo [1 |3 |2

0 |0 |0 [0 |2 |2

T

A [0 o o o |1 [1

12

Local Alignment

Recall that for suffix alignment, D[1,j] denote the optimal “suffix
alionment” alignment score of s[1..], t[1..j]. Le., D[1,j] is the
maximum alignment score for s[i’..1] and t[j’..j] for all " and .
Therefore, optimal local alignment score is just max;; DILj].
Algorithm:

* Fill the dynamic progrmaming table is the same as suffix alignment.

* Find (1,)) to maximize D[i,j], and backtrack from there.

13

Local Alignment

Hxample

Match=1
Mismatch=-1
Indel=-1

C A C

0 10,(0 [0 [0 |0
AN

Alo jo |1 o |0 |0

v [0 [0 [0 [2 |1 |0

+ o o fo |1 32

0 |0 |0 [0 |2 |2

A [0 o o o |1 |1

14

A Little History

The algorithm was first proposed by Temple Smith and Michael
Waterman in 1981. It works for both linear and affined gap penalty.

It 1s known popularly as the Smith-Waterman algorithm.

The global alignment algorithm was called the Needleman-Wunsch
algorithm, which was published 1n 1970.

Temple Smith and Michael Waterman. (1981) “Identification of
common molecular subsequences.” Journal of molecular
biology 147(1): 195-197.

Saul Needleman and Christian Wunsch. (1970). "A general
method applicable to the search for similarities in the amino acid
sequence of two proteins". Journal of Molecular Biology. 48(3):
443-53.

15

Space Saving

Space complexity is O(mn).
What if we only want the score?
And the end positions?

And the start positions?

C A C
0 O\O 0O (0 |0
o (0 |1 {0 |0 |0
O (0 |0 (2 |I 10
O (0 |0 |1 (3)2
O (0 |0 |0 |2 |2
o (0 |0 |0 (I |1

16

Attine Gap Local Alignment

(D, [i-1, j-1];

Dy[ij] = £(s[i], tf]) + max) D,[i-1,j-1];

D,[i-1, 5-1};
N0

D, [1,j] = gapext + maX<

D1, j-1] + gapopen;
D1, j-15;

D,[1,j]] = gapext + ma§.<<

0

~D,[i-1, j] +gapopen;

D,[i-1, i];

~0

Algorithm 1s as before,
except that score is now
lower bounded by 0.
Afterward, find
maximum element in all

3 tables, and backtrack
until reaching a 0.

17

Compute Many Local Alignments

It’s sometimes useful to find many local alignments of S and T. E.g.

when there are multiple similar regions between the two input strings.

How?

Time complexity?

18

Local Alignment

19

Fit Alignment

Given sequence S and T. Find a global alignment between S and a
substring of T, maximizing the alighment score.

S/ /

T g

Deleting the pretfix of T is free, deleting the suffix of T is free.
(
How?

Time Complexity? S

20

Linear Space Alignment

Why linear space?
* Computer RAM used to be very expensive in 80s.
* “Prediction: The cost for 128 kilobytes of memory will fall below U$100 in the near future.”
* Creative Computing magazine. December 1981, page 6.

* Even today, keeping everything in the L2 cache may speed up the computation.

We have learned the linear space if only alignment score, instead of the alignment,
is required.

Let’s now develop a linear space alignment. We focus on global alignment model
first.

21

Divide and Conquer

We want to find j such that the
optimal alignment between S and T
consists of two parts

« S[1.m/2] aligns with T[1..j]

* S[m/2+1..m] aligns with T[j+1..n] T[1.] T[j+1..0]

S[1.m/2] S[m/2+1..m]

Then we can use divide and conquer.

However, we need to comptue | in
linear space.

Note that there may be more than
one j satistying the condition. Any
one of them will do the job.

22

Divide and Conquer

S[1.m/2] S[m/2+1..m]

S

T[1..q] T[i+1..0]

Claim: j satisfies the desired condition iff it maximizes
alignScore(S[1).m/2|,T[1..j]) +
alignScore(S{m/2%+1..m],T[j+1,n])

Let D be the dynamic programming table for aligning S and T,
where do we find alignScore(S[1..m/2],T[1..j]) for every j?

How about alignScore(S[m/2+1..m|, T[j+1,n])?

23

Divide

S[m/2+1..m]

S[1..m/2]

-3

-1

-3

-1

-4
5

-4
-5

Computing the two center

columns requires linear space.

24

Algorithm

Algorithm Align(S,T):
1. If |S| =1, return a trivial alignment.

2. Use the previous idea to find j that maximizes alignScore(S[1..m/2],
T[1.]) + alignScore(S[m/2..m], T[j+1..n])
3. Concatenate Align(S[1..m/2], T[1..j]) and Align(S[m/2..m], T[j+1..n])

and return it.

25

Time Complexity

m/?2

* T(m,n) </mn + T(m/2,))+T(m/2,n-))< 2 mn

26

D.S. Hirschberg, A linear space algorithm for

computing longest common subsequences,

Comm. ACM 18 (1975) 341-343.

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences

D.S. Hirschberg
Princeton University

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

27

Linear Space Atfine Gap Penalty

CABIOS

Vol.4. no.1. 1988
Pages 11-17

Optimal alignments in linear space

Eugene W.Myers!.2 and Webb Miller?

Abstract

Space, not time, is often the limiting factor when computing
optimal sequence alignments, and a number of recent papers
in the biology literature have proposed space-saving strategies.
However, a 1975 computer science paper by Hirschberg
presented a method that is superior to the new proposals, both
in theory and in practice. The goal of this paper is to give
Hirschberg's idea the visibility it deserves by developing a
linear-space version of Gotoh's algorithm, which accommodates
affine gap penalties. A portable C-software package implement-
ing this algorithm is available on the BIONET free of charge.

where 0,,,, = max, ,0(a,b) (Smith er al., 1981). Thus, to
produce an alignment that maximizes the similarity score, first
apply these transformations and then run the program describ-
ed in this paper with the resulting w, g and h. If the minimum
conversion score is C, then the corresponding maximum align-
ment score is 2(M + N)opy,,—C.

Gotoh (1982) gave an algorithm that solves such problems
in O(MN) time. If only the minimum cost is desired, then it
is easy to implement the algorithm in O(N) space, where N can
be taken as the shorter sequence length. If one also desires a
set of operations attaining the minimum cost, then straightfor-

ward imnlamentatinne need (MM enace In nractice thic enace

“T'he goal of this paper 1s to give
Hirschberg’s idea the visibility it

deserves by developing a linear-space

version of Gotoh’s algorithm.”

28

(Question

How to do local alignment in linear space?

How to do atfined gap penalty in linear spacer

29

