Review:

- Alignment for bio-sequence comparison
- Dynamic programing algonthm
- define subproblens: $D[i, j]=$ optimal align score of $S[1 \cdots i], \tau[1 . j]$
- recurrence relation
- base case
- order of computation
- back tracking.

- practical tricks

$$
D[i-1, j-1]+f(s \tau i), T \tau j) \quad D[i-1, j]+i n d e l
$$

- Linear space score
- compute the "pointers" during backtracking
- gap penalty
- arbitrary g(k)

Affine gap penalty example

For example: match $=1$; mismatch $=-1$; gap open $=-5$; gap extension $=-1$.

- ATAGG--AAG
-|| || | |
- ATTGGCAATG
- 6 match, 2 mismatch, 1 gap open, 2 gap extension, score = ?
- ATAGG-AA-G
- || || || | $7-1 \quad-5-1 \quad-5-1=-6$
-ATTGGCAATG

Old Algorithm Does not Work

- Consider the last column of an alignment again:

- When the last column is an indel, the added cost depends on the previous column.
- If previous column has a gap opened already, then
- $D[4,6]=D[4,5]+$ gapext
- Else
- $\quad D[4,6]=D[4,5]+$ gapopen + gapext
- How do we know the previous column's configuration?
- Because by induction we know the optimal solution for $D[i, j-1]$, can we simple look at it and use the configuration?

Algorithm for Affine Gap

- We compute the optimal solution by limiting the last column to one of the following three configurations:

$D_{0}[i, j]$
(44) abe wat

$D_{1}[i, j]$
- v.ST $\overline{0} j]$

ATAGGC
|| | |
ATTGG-
$D_{2}[i, j]$

- We only distinguish them by the last column, there is no constraint for columns before the last column.

$$
\begin{aligned}
& \text { ATAGG } \\
& \text { | 1 | | } \\
& \text { ATTGG } \\
& \text { ATAGG- } \\
& \text { | \| \| } \\
& \text { ATTGGC } \\
& D_{0}[i, j] \quad D_{1}[i, j] \\
& S[1 ., i-1] S[i] \\
& T[(\ldots j-1] \text { T [j] } \\
& \text { case } 1 \\
& \text { casez } \\
& \left(\begin{array}{l}
s[(\ldots i-2] s[i-1) s[i j] \\
\tau[(\ldots j-2] T[j-1] T[j]
\end{array} \rightarrow D_{0}[i, j]=D_{0}[i-1, j-1]^{+}+f(S[i], \tau \tau j]\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case } 3 \\
& \begin{array}{l}
\left(s c(1, i-2] s[i-1) s(i) \rightarrow D_{0}(i, j)=D_{2}[i-1, j-1)+f(s[i], \pi i j)\right. \\
-\left[(\cdots, j-1)-\int[j]\right.
\end{array}
\end{aligned}
$$

Recurrence Relation

Algorithm

- No difference to the simple DP but now uses three arrays.
- Backtracking should be very careful!
- Still O(nm) time. Approximately 3 times slower.
- This is okay because the model is more expressive.
- Much faster than the general gap penalty.

Gotoh, O., 1982. An improved algorithm for matching biological sequences. Journal of molecular biology, 162(3), pp.705-708.

