- Alignment for bio	<u> </u>		rison						
- Dynamic programm	ing algon	thm							
- define subpr	oblens: DI:	·j] >	aption	ral a	h'gn	Score	0+ 5	5000]
- recurrence	re adjon					A (T			
- base cas	e		SL1.	i-1]\S	ひり	SLI.	·i-1)473		
- order of	computation	1	TI.	.j-12)	[[3:	TI			
- back trout	ing.								
- jrractical tr		DĒi-	1, j- 1)-	ff(si	アン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィ	(درع	pzi-	1,j2+	(11)
- Gnear or	med Scot	·e							
- compute	the "poi	nyars"	durin	g þa	cktra	ting			
- gap penulty						J			

Affine gap penalty example

For example: match = 1; mismatch = -1; gap open = -5; gap extension = -1.

- ATAGG--AAG
- | | | | |

6-2 -5-2 = -3

- ATTGGCAATG
- •6 match, 2 mismatch, 1 gap open, 2 gap extension, score = ?
- ATAGG-AA-G
- | | | | | |

7-1 -5-1 -5-1 = -6.

• ATTGGCAATG

Old Algorithm Does not Work

Consider the last column of an alignment again:

- When the last column is an indel, the added cost depends on the previous column.
 - If previous column has a gap opened already, then
 - D[4,6] = D[4,5] + gapext
 - Else
 - D[4,6] = D[4,5] + gapopen + gapext
- How do we know the previous column's configuration?
- Because by induction we know the optimal solution for D[i,j-1], can we simple look at it and use the configuration?

Algorithm for Affine Gap

 We compute the optimal solution by limiting the last column to one of the following three configurations:

• We only distinguish them by the last column, there is no constraint for columns before the last column.

Recurrence Relation

$$D_0[i,j] = f(s[i], t[j]) + \max \left\{ D_0[i-1, j-1]; \\ D_1[i-1, j-1]; \\ D_2[i-1, j-1]; \\ D_2[i-1, j-1]; \right\}$$

$$D_{1}[i,j] = \text{gapext} + \max \begin{cases} D_{0}[i,j-1] + \text{gapopen}; \\ D_{1}[i,j-1]; \\ D_{2}[i,j-1] + \text{gapopen}; \end{cases}$$

$$D_{2}[i,j] \neq \text{gapext} + \text{max} \begin{cases} D_{0}[i-1, j] + \text{gapopen;} \\ D_{1}[i-1, j] + \text{gapopen;} \\ D_{2}[i-1, j]; \end{cases}$$

Note the grayed cases can't be optimal so can be safely removed.

Algorithm

- No difference to the simple DP but now uses three arrays.
- Backtracking should be very careful!
- Still O(nm) time. Approximately 3 times slower.
- This is okay because the model is more expressive.
- Much faster than the general gap penalty.

Gotoh, O., 1982. An improved algorithm for matching biological sequences. *Journal of molecular biology*, *162*(3), pp.705-708.