
§no

I
0

OF5•
É

&E-
I

o
9-

ÉÉ
iÉ÷

.¥•É
÷
¥÷÷§§ :$

÷
•
⇒

2
1

• Suppose we are to align S[1..i] and T[1..j]. Consider the last column of
the optimal alignment. Three cases can happen:

• In each case, the sub-alignment without the last column is an optimal
one (why?)

Last column of an alignment

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)

00 0 0ggi-iP@g5iitiDDEi-i.j-1
"

t
D-ciijJ-D-i-1.j-D-fls-i.IT -4'D

÷g÷ÉÉÉ¥
É÷÷±÷ +>

:* "

Recurrence Relation
• Denote the optimal alignment score of S[1..i], T[1..j] by D[i,j]. Then D[m,n] is the optimal

alignment score.
• Let f(a,b) be the score between two letters a and b.
• Consider last column of the alignment.
• Case 1: S[i] v.s. T[j]

• D[i,j] = D[i-1, j-1] + f(S[i], T[j]);
• Case 2: S[i] v.s. -

• D[i,j] = D[i-1, j] + f(S[i], -);
• Case 3: - v.s. T[j]

• D[i,j] = D[i, j-1] + f(-, T[j]);
• Therefore…

22

D[i-1, j-1] + f(S[i], T[j]);
D[i,j] = max D[i-1, j] + f(S[i], -);

D[i, j-1] + f(-, T[j]);

S[1..i-1]
T[1..j-1]

S[i]
T[j]

S[1..i-1]
T[1..j]

S[i]
-

S[1..i]
T[1..j-1]

-
T[j]

o

23

Algorithm
D[0,0] = 0;
for i from 1 to m

D[i,0] = i* indel;
for j from 1 to n

D[0,j] = j* indel;
for i from 1 to m

for j from 1 to n
D[i-1, j-1] + f(S[i], T[j]);

D[i,j] = max D[i-1, j] + f(S[i], -);
D[i, j-1] + f(-, T[j]);

Output D[m,n];

Time complexity : 0cm , n?
151 =m.IT/--n .

→

SEI . . it v. s
' '

0cm)

0 Cn)

} 0cm - n)

/ Oa).-

2
4

Dynamic Programming Table

C A T T G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1

-3

-4

-5

A

T

T

G

A

Match =/

mismatch =-1

indef = - l
.

1-→
5 .

Dei . ;] 0

É
i

0

°

o¥

0

Dynamic Programming Table

C A T T G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A

2
6

Getting the actual alignment – backtracking

C A T T G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

p 25,5]
.

= DIK,5) tf CA , -)
.

5

①⑧
DE45]

•
④

3
- I

¥0 c- ¥ :

5 0

2
7

Complexity

• Time Complexity:
• Filling the table takes O(nm) time: Each step requires

only 3 checks to other points in the matrix.
• How about the backtracking?

• Space Complexity:
• O(nm)

S - -
-

- -
-
- T

2
8

A Practical Trick

C A T T G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

No need to physically record
the green arrows. Why?

Dci,j]=max|☐É
- '
'I - 'Jtfcsii]#ijy ?

Dci - i.JJ + indef
DI3i4] 4

Dci,j - ☐ tindel
.

Ocmtn) steps
Added cost

01min) writing of
the

arrows .
3 saved

.

2
9

Another Trick

C A T T G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

If only score is needed, then
space complexity can be
reduced.

Ocn)

L t
V

0cm ,
ocmincm.nl)

→

→

→

Score Function

• Now we have the algorithm for any score scheme f(x,y)
• Such separation of scoring and algorithm is a good thing. It allows us to

optimize the score scheme independent to the algorithm.

3
0

The effective exploitation of his powers of
abstraction must be regarded as one of the
most vital activities of a competent
programmer.

- Dijkstra

Transition vs. Transversion

• Transition happens more frequently 2/3 of SNPs
are transitions.

• In other words, transition is easier and therefore
should be less penalized.

E.g.:
AAAGCAAA
AAAT-AAA

AAAGCAAA
AAA-TAAA

vs

• This can be easily achieved by changing score
scheme f(a,b).

:

Alignment v.s. LCS vs. Edit Distance

• By a properly defined score scheme, alignment can represent
LCS and Edit distance, respectively.
• match =
• mismatch =
• indel =

3
2

How to Build a Score Function

• First, know what you want.
• Purpose 1: the optimal alignment reveals the true evolutionary history.
• Purpose 2: high score indicates homology (derived from same ancestor).
• We want purpose 1 if possible, but purpose 2 is also useful.

33

ATGCA-TTTATTCCGAGG
||| | || ||| || ||
ATGTACTT-ATTACGTGG

Philosophy of a Score Function

• For purpose 1, right away: we might be wrong.
• That is, the alignment that has highest score may not be the one that actually

matches evolutionary history.
• So you should never trust that an alignment must be right. It just optimizes the

score.
• Should we give up purpose 1 at all?

34

IT
¥

A

it

Philosophy of A Score Function

• For purpose 1, the optimal alignment may be approximately correct under certain conditions in
practice.

• As long as we know the limitation, we can still use it.
• For example, for the following alignment, it is “very likely” the alignment is approximately equal

to the evolutionary history.
•ACGTATTACCGG-TTACCG
•||| |||||||| ||||||
•ACGGATTACCGGATTACCG

• Limitation we keep in mind: when score is low, alignment itself is not too useful.

35

&

•

Gaps

• The left seems “simpler” than the right.
• Indeed, during evolution, indels are relatively rare. However, insertion or

deletion a segment of k consecutive bases is much easier than k scattered
indels.

• But our current scoring method (adding up column scores) cannot distinguish
the two.

• Currently, a gap of length k costs k*indel. Thus, this is called the linear gap
penalty.

36

AGATTTTTTTC
AGA---TTTTC

AGATTTTTTTTTC
AGA-T-T-T-T-C

9%
OM o o o µ
3¥84)

,

Arbitrary gap penalty

• Consecutive insertions or deletions are called a gap. Suppose the gap penalty of a length
k gap is g(k) instead of the simple c*k.

• Assume g(x)+g(y)<= g(x+y). (Otherwise does not serve the purpose of grouping indels.)
• Can the old DP still work?

37

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)

SII . - i - k] sci-k-c.si]

)i-i
_→

①⑧⑧ £=xi-kitsch .

-6

gets - SCKD

Arbitrary Gap Penalty

• Old algorithm does not work anymore because we do not know the contribution of the
last column to the gap penalty in the last two cases.

• The length of the gap is needed.

38

Alignment Algorithm for Arbitrary Gap Penalty

• We still use D[i,j] to denote the optimal alignment score of S[1..i] and T[1..j].
• We change cases 2 and 3 to include the last gap (not the last column).
• D[i,j] = max of the following three cases:
• D[i-1,j-1]+f(s[i],t[j]). (s[i] v.s. t[j])
• max1≤k ≤ i D[i-k,j] + g(k)
• max1≤k ≤ j D[i,j-k] + g(k)

39

S[1..i-k]

T[1..j]

S[i-k+1..k]

-…-

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1) (2)

S[1..i]

T[1..j-k] T[j-k+1..k]

-…-

(3)

for i =
'
- •

m

} man
for j-i.cn

recurrence relation
.

. 01min)ptiµ ← o(mxnxcmt"D)
.

•i
•

j

Time Complexity

• Cubic time complexity.
• In bioinformatics, very often we face the choice between:

• Reality: How close it approximates the real biology
• Simplicity: How easy it can be computed

• Now let’s simplify the g(k) a little. We basically want a function that grows slower
than linear.

• g(k) = a + b*k
• a = gap open penalty
• b = gap extension penalty

• This is called affine gap penalty, in contrast to linear gap penalty.

40

lecture
2022^01-13 stopped here .

I

