O DA
> o»kjy\w\m{' wich fye softmae <C(/‘~S'(D'k DMﬂa)
@ Q&,\"‘C AXS{M cQ

® s
@ DL(/\‘ﬁ"\"'\M - fo M@Mh@ '(‘9'(0"« UT‘H\@ a(A.LMV\ ScovY

Last column of an alignment

* Suppose we are to align S[1..iJand T[1..j]. Consider the last column of
the optimal alignment. Three cases can happen:

Fox |
S[iT) S[2.0-1] - S[L.]
/7 @ L] o TIL]
@ U

2 3)

QCM} g

* In each case, the sub-alignment without the last column is an optimal
one (why?) \/

DLd =pT-l -0 (5T, T

S[1..i-1] S[i]
T[1..j-1] T(j]
/ v

D591 = DLi-h o A+]L(SDU”>

DT = DLE J-QE T (-, Teig)

Recurrence Relation

* Denote the optimal alignment score of S[1..i], T[1..j] by D[i,j]. Then D[m,n] is the optimal
alignment score.

* Let f(a,b) be the score between two letters a and b.

« Consider last column of the alignment. iﬁ;ﬂ iﬁ]]
* Case 1: S[i] v.s. T[j] |
. C oA : . S[L.i-1] 1 S[i]
* D[IIJ] = D[I-ll J_l] + f(S[I]I T[J])r T[1..j] -
* Case 2:S]i] v.s. -
. C D Y. S[1..] -
D[i,j] = D[i-1, j] + f(S[i], -); g

* Case 3:-v.s. T[j]
* DI[i,j] = DI[i, j-1] + (-, T[j1);

* Therefore... Pli-L, J-1] + LI, Thl)

DI[i,jl = max< D[i-1, j] + f(S[il, -);
DI, j-1] + f(-, T[j);

22

Algorithm

D[0,0] =0;
forifrom1ltom
D[i,0] =i* indel;
forjfrom1ton
D[0,j] =j* indel;
forifrom1ltom
forjfrom1ton
{ D[i-1,j-1] + f(S[i], T[j]);
DI[i,j] = max< DJi-1, j] + f(S][i], -);
Dli, j=1] + f(-, T[j]);
Output D[m,n];

23

Dynamic Programming Table

C A T) T G
0 |-1 (-2 |-3 |4 |-5
A -1 |- O] -1) -2 [-3
T 2 |2 @9&
T |-3
c |-4
A |-5

DIi,j] = max{

D[i-1, j-1] + f(S[il, T[j1);
DIi-1, j1 + f(STil, -);
D[i, j-1] + f(-, TO1);

Dynamic Programming Table

cC A T G
0 -1 -2 {-3 =5
-1 (-1 |0 -1 -3
2 -2 -1 |1 =1
3 (-3 -2 |0 I
4 (-4 |3 |-] 3
S5 -5 -3 |2 2

Getting the actual alignment — backtracking

3

?
s 1s 1312 1o |2) CATIG-
-ATTGA

Complexity

* Time Complexity:
* Filling the table takes O(nm) time: Each step requires
only 3 checks to other points in the matrix.

* How about the backtracking?
* Space Complexity:
e O(nm)

A Practical Trick

CcC A T T @
0 =1 (2 3 {4 |5
Ao f-1 1[0 -1 2 |3
I I I T
N i Nl
Sola s 2 0 12t
IS - B\
N I K
s |5 |5 13 |2 o |27

No need to physically record
the green arrows. Why?

CATTG-
—ATTGA

=)

Another Trick

If only score is needed, then
O <:31 —*2 1=z —«4 —ﬂ>5 space complexity can be
N reduced.

T |2 [|-2 |-1

Score Function

* Now we have the algorithm for any score scheme f(x,y)

* Such separation of scoring and algorithm is a good thing. It allows us to
optimize the score scheme independent to the algorithm.

The effective exploitation of his powers of
abstraction must be regarded as one of the
most vital activities of a competent
programmer.

&6

%9

- Dijkstra

Transition vs. Transversion

NH, o}
N7 NN HN J
. _ | N>
N ll:li purines HoN N
adenine Transitions graninie
AA‘ >AG
Transversions Transversions
v‘)v
'|‘1H2 C Transitions T 0
f'\' | NH
pyrimidines
N/]\O NAO
H H
cytosine thymine

Transition happens more frequently 2/3 of SNPs
are transitions.

In other words, transition is easier and therefore
should be less penalized.
E.g.:

AAAGCAAA
AAAT-AAA

vs AAAGCAAA
AAA-TAAA

This can be easily achieved by changing score
scheme f(a,b).

Alignment v.s. LCS vs. Edit Distance

* By a properly defined score scheme, alignment can represent
LCS and Edit distance, respectively.
* match =
* mismatch =
* indel =

How to Build a Score Function

First, know what you want.
Purpose 1: the optimal alighment reveals the true evolutionary history.
Purpose 2: high score indicates homology (derived from same ancestor).

We want purpose 1 if possible, but purpose 2 is also useful.

ATGCA-TTTATTCCGAGG

BN N N
ATGTACTT-ATTACGTGG

Philosophy of a Score Function

For purpose 1, right away: we might be wrong.

That is, the alignment that has highest score may not be the one that actually
matches evolutionary history.

So you should never trust that an alignment must be right. It just optimizes the
score.

Should we give up purpose 1 at all?

Philosophy of A Score Function

* For purpose 1, the optimal alignment may be approximately correct under certain conditions in
practice.

* As long as we know the limitation, we can still use it.

* For example, for the following alignment, it is “very likely” the alignment is approximately equal
to the evolutionary history.
*ACGTATTACCGG-TTACCG
fir~10rrrrrrr Trrrl
*ACGGATTACCGGATTACCG

 Limitation we keep in mind: when score is low, alignment itself is not too useful.

AGATTTTTTTC AGAIITTTTTTTTIC
AGA=—-TTTTC AGA,ToT=STSTHC

 The left seems “simpler” than the right.

* Indeed, during evolution, indels are relatively rare. However, insertion or
deletion a segment of k consecutive bases is much easier than k scattered
indels.

 But our current scoring method (adding up column scores) cannot distinguish
the two.

* Currently, a gap of length k costs k*indel. Thus, this is called the linear gap
penalty.

Arbitrary gap penalty

* Consecutive insertions or deletions are called a gap. Suppdgse the gap penalty of a length
k gap is g(k) instead of the simple c*k.

« Assume g(x)+g(y)<= g(x+y). (Otherwise does not serve the|purpose of grouping indels.)

» Can the old DP still work? DT,)] > PLER] tgch)

S[1..i-1] S[i] S[1..i-1] S[i] S[1..i]
T[1..j-1] T[j] T[1..j] - T[1..j-1] T[j]

(1) (2) (3)

Arbitrary Gap Penalty

* Old algorithm does not work anymore because we do not know the contribution of the
last column to the gap penalty in the last two cases.

* The length of the gap is needed.

Alignment Algorithm for Arbitrary Gap Penalty

* We still use DJi,j] to denote the optimal alignment score of S[1..i] and T[1..j].

* We change cases 2 and 3 to include the last gap (not the last column).

* DJi,j] = max of the following three cases:

/7 » D[i-1,j-1]+f(s[i],t[j]). (s[i] v.s. t[j])

* maxy <; Dli-k,j] +g(k) & .

* maxiq <j D[i,j-k] + g(k) %/ﬁ
. M XAy (g9 >
. o[D)

S[1.i-1] S[] | [S[L.ikl [Slik+1]

T[1.j-1] T[] T[1..j]
(1) (2)

A
O ()

S[1..i]
T[1..j-k] [T[j-k+1..4]
(3))

Time Complexity

Cubic time complexity.

In bioinformatics, very often we face the choice between:
* Reality: How close it approximates the real biology
* Simplicity: How easy it can be computed

Now let’s simplify the g(k) a little. We basically want a function that grows slower
than linear.

g(k) = a + b*k
* a= gap open penalty
* b =gap extension penalty

* This is called affine gap penalty, in contrast to linear gap penalty.

