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• Suppose we are to align S[1..i] and T[1..j].  Consider the last column of 
the optimal alignment.  Three cases can happen:

• In each case, the sub-alignment without the last column is an optimal 
one (why?)

Last column of an alignment

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)
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Recurrence Relation
• Denote the optimal alignment score of S[1..i], T[1..j] by D[i,j].  Then  D[m,n] is the optimal 

alignment score.
• Let f(a,b) be the score between two letters a and b. 
• Consider last column of the alignment.
• Case 1: S[i] v.s. T[j]

• D[i,j] = D[i-1, j-1] + f(S[i], T[j]);
• Case 2: S[i] v.s. -

• D[i,j] = D[i-1, j] + f(S[i], -);
• Case 3: - v.s. T[j]

• D[i,j] = D[i, j-1] + f(-, T[j]);
• Therefore…

22

D[i-1, j-1] + f(S[i], T[j]);
D[i,j] = max      D[i-1, j] + f(S[i], -);

D[i, j-1] + f(-, T[j]);

S[1..i-1]
T[1..j-1]

S[i]
T[j]

S[1..i-1]
T[1..j]

S[i]
-

S[1..i]
T[1..j-1]

-
T[j]

o
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Algorithm
D[0,0] = 0;
for i from 1 to m 

D[i,0] = i*  indel;
for j from 1 to n 

D[0,j] = j* indel;
for i from 1 to m

for j from 1 to n
D[i-1, j-1] + f(S[i], T[j]);

D[i,j] = max      D[i-1, j] + f(S[i], -);
D[i, j-1] + f(-, T[j]);

Output D[m,n];

Time complexity : 0cm , n?
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Dynamic Programming Table

C  A   T  T  G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1

-3

-4

-5

A

T

T

G

A

Match =/

mismatch =-1

indef = - l
.
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Dynamic Programming Table

C  A   T  T  G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
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Getting the actual alignment – backtracking

C  A   T  T  G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

p 25,5]
.

= DIK,5) tf CA , -)
.
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Complexity

• Time Complexity:
• Filling the table takes O(nm) time: Each step requires 

only 3 checks to other points in the matrix.
• How about the backtracking?

• Space Complexity:
• O(nm)

S - -
-
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-
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A Practical Trick

C  A   T  T  G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

No need to physically record 
the green arrows.  Why?

Dci,j]=max|☐É
- '
'I - 'Jtfcsii]#ijy ?

Dci - i.JJ + indef
DI3i4] 4

Dci,j - ☐ tindel
.

Ocmtn ) steps
Added cost

01min) writing of
the

arrows .
3 saved

.
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Another Trick

C  A   T  T  G
0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

If only score is needed, then
space complexity can be
reduced.
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Score Function

• Now we have the algorithm for any score scheme f(x,y)
• Such separation of scoring and algorithm is a good thing. It allows us to

optimize the score scheme independent to the algorithm.

3
0

The effective exploitation of his powers of 
abstraction must be regarded as one of the 
most vital activities of a competent 
programmer.

- Dijkstra



Transition vs. Transversion

• Transition happens more frequently 2/3 of SNPs 
are transitions.

• In other words, transition is easier and therefore
should be less penalized.

E.g.:
AAAGCAAA
AAAT-AAA

AAAGCAAA
AAA-TAAA

vs

• This can be easily achieved by changing score
scheme f(a,b).

:



Alignment v.s. LCS vs. Edit Distance

• By a properly defined score scheme, alignment can represent 
LCS and Edit distance, respectively.
• match =  
• mismatch = 
• indel = 

3
2



How to Build a Score Function

• First, know what you want.
• Purpose 1: the optimal alignment reveals the true evolutionary history.
• Purpose 2: high score indicates homology (derived from same ancestor).
• We want purpose 1 if possible, but purpose 2 is also useful.

33

ATGCA-TTTATTCCGAGG
||| | || ||| || ||
ATGTACTT-ATTACGTGG



Philosophy of a Score Function

• For purpose 1, right away: we might be wrong.
• That is, the alignment that has highest score may not be the one that actually 

matches evolutionary history.
• So you should never trust that an alignment must be right.  It just optimizes the 

score.
• Should we give up purpose 1 at all?

34
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Philosophy of A Score Function

• For purpose 1, the optimal alignment may be approximately correct under certain conditions in
practice.

• As long as we know the limitation, we can still use it. 
• For example, for the following alignment, it is “very likely” the alignment is approximately equal

to the evolutionary history.
•ACGTATTACCGG-TTACCG
•||| |||||||| ||||||
•ACGGATTACCGGATTACCG

• Limitation we keep in mind: when score is low, alignment itself is not too useful.

35
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Gaps

• The left seems “simpler” than the right.
• Indeed, during evolution, indels are relatively rare. However, insertion or

deletion a segment of k consecutive bases is much easier than k scattered 
indels. 

• But our current scoring method (adding up column scores) cannot distinguish
the two.

• Currently, a gap of length k costs k*indel. Thus, this is called the linear gap
penalty.

36

AGATTTTTTTC
AGA---TTTTC

AGATTTTTTTTTC
AGA-T-T-T-T-C
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Arbitrary gap penalty

• Consecutive insertions or deletions are called a gap.  Suppose the gap penalty of a length 
k gap is g(k) instead of the simple c*k. 

• Assume g(x)+g(y)<= g(x+y). (Otherwise does not serve the purpose of grouping indels.) 
• Can the old DP still work?

37

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)

SII . - i - k] sci-k-c.si]
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Arbitrary Gap Penalty

• Old algorithm does not work anymore because we do not know the contribution of the
last column to the gap penalty in the last two cases.

• The length of the gap is needed.

38



Alignment Algorithm for Arbitrary Gap Penalty

• We still use D[i,j] to denote the optimal alignment score of S[1..i] and T[1..j].
• We change cases 2 and 3 to include the last gap (not the last column).
• D[i,j] = max of the following three cases:
• D[i-1,j-1]+f(s[i],t[j]).      (s[i] v.s. t[j])
• max1≤k ≤ i D[i-k,j] + g(k)
• max1≤k ≤ j D[i,j-k] + g(k)
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S[1..i-k]

T[1..j]

S[i-k+1..k]

-…-

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1) (2)

S[1..i]

T[1..j-k] T[j-k+1..k]

-…-

(3)

for i =
'
- •

m

} man
for j-i.cn

recurrence relation
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Time Complexity

• Cubic time complexity.
• In bioinformatics, very often we face the choice between:

• Reality: How close it approximates the real biology
• Simplicity: How easy it can be computed

• Now let’s simplify the g(k) a little.  We basically want a function that grows slower 
than linear.

• g(k) = a + b*k 
• a =  gap open penalty
• b = gap extension penalty

• This is called affine gap penalty, in contrast to linear gap penalty.

40
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