Sequence Alignment

Example:

>AVP78042.1 spike protein [Bat SARS-like coronavirus]

MLFFLFLQFALVNSQCDLTGRTPLNPNYTNSSQRGVYYPDTIYRSDTLVLSQGYFLPFYSNVSWYYSLTT NNAATKRTDNPILDFKDGIYFAATEHSNIVRGWIFGTTLDNTSQSLLIVNNATNVIIKVCNFDFCYDPYI SGYYHNNKTWSIREFAVYSFYANCTFEYVSKSFMLNISGNGGLFNTLREFVFRNVDGHFKIYSKFTPVNI NRGLPTGLSVLQPLVELPVSINITKFRTLLTIHRGDPMSNNGWTAFSAAYFVGYLKPRTFMLKYNENGTI TDAVDCALDPLSETKCTLKSLSVQKGIYQTSNFRVQPTQSIVRFPNITNVCPFHKVFNATRFPSVYAWER TKISDCIADYTVFYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRFSEVRQVAPGQTGVIADYNYKL PDDFTGCVIAWNTAKQDTGHYFYRSHRSTKLKPFERDLSSDENGVRTLSTYDFNPNVPLEYQATRVVVLS FELTNAPATVCGPKISTOLVKNQCVNFNFNGIKGTGVITDSSKRFQSFQQFGKDASDFTDSVRDRQTI LDITPCSFGGVSVITPGTNTSSEVAVLYQDVNCTDVPTTIHADQLTPAWRIYAIGTSVFQTQAGCLIGAE HVNASYECDIPIGAGICASYHTASILRSTGQKAIVAYTMSLGAENSIAYANNSIAIPTNFSISVTTEVMP VSMAKTSVDCTMYICGDSIECSNLLLQYGSFCTQLNRALSGIAIEQDKNTQEVFAQVKQIYKTPPIKDFG GFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDISARDLICAQKFNGLTVLPPLLTDE MIAAYTAALISGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQESI TSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYV TQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYIPSQEKNFTTA PAICHEGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDS KEELDKYFKNHTSPDIDLGDISGINASVVNIQKEIDRLNEVARNLNESLIDLQELGKYEHYIKWPWYVWI GFIAGLIAIVMVTILLCCMTSCCSCLKGCCSCGFCCKFDEDDSEPVLKGVKLHYT
>YP 009724390.1 surface glycoprotein [Severe acute respiratory syndrome coronavirus 2] MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHV SGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPF LGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPI NLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYN ENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASV YAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYF PLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFL PFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLT PTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLG AENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGI AVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDC LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIG VTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDI LSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLM SFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNT FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRINEVA KNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDD SEPVLKGVKLHYT

- How do we know these two proteins are similar?
- Many existing tools: such as Clustal Omega.

Sequence Alignment

AVP78042.1 YP_009724390.1

AVP78042.1 YP_009724390.1

AVP78042.1 YP_009724390.1

AVP78042.1 YP_009724390.1

AVP78042.1
YP_009724390.1

AVP78042.1 YP_009724390.1

VNNATNVIIKVCNFDFCYDPYLSGYYHN-NKTWSIREFAVYSFYANCTFEYVSKSFMLNI VNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSOPFLMDL

SGNGGLFNTLREFVFRNVDGHFKIYSKFTPVNLNRGLPTGLSVLQPLVELPVSINITKFR EGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQ .*: * *:.******:*:**:******.**:** *.** *:*.*:***:**:.****:*:

TLLTIHRGDP---MSNNGWTAFSAAYFVGYLKPRTFMLKYNENGTITDAVDCALDPLSET TLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSET ***: :**.
*..**** :***:****:****:**********************
KCTLKSLSVQKGIYQTSNFRVQPTQSIVRFPNITNVCPFHKVFNATRFPSVYAWERTKIS KCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRIS ******::*:**************:**********:*** : ******* *****:*.:**

DCIADYTVFYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRFSEVRQVAPGQTGVIA NCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGOTGKIA

DYNYKLPDDFTGCVIAWNTAKODT-----GHYFYRSHRSTKLKPFERDLSSDENDYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTP

,

- Too many identical positions to be random.

- Insertion/deletion (indel) needed for a proper comparison.

Nucleotide and Base Pairs

- Two classes of necleutide bases:
- Purine: A and G
- Pyrimidine: T and C
- Base pairs are due to hydrogen bonds.
- G-C bind stronger because of 3 H -bonds.
- DNA moleculre is oriented ($5^{\prime}->3^{\prime}$).

Reverse Complement a DNA Sequence

- DNA is double-helical, with two complementary strands.
- Complementary bases:
- Adenine (A) - Thymine (T)
- Guanine (G) - Cytosine (C)
- Example: What is the reverse complement of AAGGTAGC?

DNA Mutation

- DNA mutates with a small probability when inherited by the offspring.
- For example, one base can be substituted by another.
- This creates different alleles of the same gene.
- An allele is a variant form of a gene at the same location of the genome among different individuals.
- Also, one only inherits half of each parent's genome.
- These together cause the differences between individuals of the same species.

Single Nucleotide Polymorphisms

- Single base variation between members of a species.
- For Human, 90% of all human genetic variation is caused by SNPs. SNPs occur every 100 to 300 bases along the 3-billionbase human genome.
- Major risk for genetic disease.

Compare DNA sequences

- The most often used distance on strings in computer science is Hamming distance.
- AGTTTAATCA
- ||| ||| |
- AGTATAACGA
- This makes some sense on comparing DNA sequences in some cases. But there are other mutations
- Substitution ACAGT \rightarrow ACGGT
- Insertion/deletion (indel) ACAGT \rightarrow ACGT
- Other DNA rearrangements can also happen. But substitutions and indel are the two mutations we concern the most for this course.

Edit Distance

- Let's focus on substitution and indel only. How "far" away are two sequences from each other?
- E.g. GGATA and GGATTA

- Edit distance: the minimum number of edit operations needed to convert one to another. Here edit operations include substitutions and indels.
d (ATGCATTTA, ATGTACTTTC)

Edit distance is a distance metric

- Identity: $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$
- Symmetry: $d(x, y)=d(y, x)$
- Triangular Inequality: $\mathrm{d}(\mathrm{x}, \mathrm{z})<=\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$

Preparation for the Algorithm

- For convenience of the proof, we treat each occurrence of the same letter different.
- E.g. ATAA -> ATA can be done by either deleting the $2^{\text {nd }}$ or $3^{\text {rd }}$ letter A from the first string. These are different editing paths.
- This does not affect our definition of edit distance, but makes our later proof more precise.

Dynamic Programming Algorithm for Edit distance

- Let $\mathrm{D}[\mathrm{i}, \mathrm{j}]=$ edit distance between $\mathrm{S}[1 . . \mathrm{i}]$ to $\mathrm{T}[1 . . \mathrm{j}]$.

```
Substitution
```

- Consider the edit operations associated with $\mathrm{S}[\mathrm{i}]$ and $\mathrm{T}[\mathrm{j}]$ in the optimal edit operations. One of the following cases will happen (why?):

1. $S[i]$ is deleted
2. $T[j]$ is inserted

The optimal is the
3. $S[i]$ becomes $T[j]$

Recurrence Relation

- $D[i, j]=\min \left\{\begin{array}{c}D[i-1, j]+1 \\ D[i, j-1]+1 \\ D[i-1, j-1]+\delta(S[i], T[j])\end{array}\right.$
- Here $\delta(S[i], T[j])=0$ if $\mathrm{S}[\mathrm{i}]=\mathrm{T}[\mathrm{j}]$ and 1 if not.

Dynamic Programming Algorithm for Edit

 distance- $\mathrm{D}[0,0]=0$.
- $D[0, i]=i$ for $i=1 . . d|\tau|$
- $D[i, 0]=i$ for $i=1 .$. ,
- for i from 1.. $|\mathrm{S}|$
- for j from 1..|T|

- $D[i, j]=\min \{D[i-1, j]+1, D[i, j-1]+1, D[i-1, j-1]+d(S[i], T[j])\}$.
- Return D[|S|, |T|]

A Note about Dynamic Programming

- Define "subproblems" $D(i, \rho]$
- Develop recurrence relation to compute subproblems
- Initialization (base cases)
- Determine the computation order for solving the subproblems.
- Usually bottom-up (smaller to larger)
- Find the solution of the original input

Longest Common Subsequence

- The second way to evaluate the similarity of two sequences is through LCS.
- A subsequence is obtained by deleting some of the letters from the supersequence and concatenating the remaining letters together.
- What is the LCS of the following two sequences?

S: ATGCATMIA

- AtgTACITLC

- LCS can be computed with dynamic programming as well. (Exercise)

Alignment

- The third way to compare to sequences is through sequence alignment.
- Align the two sequences by inserting spaces, so that they are the most similar column-wisely.
- ATGCA-TTTA

- What does "similar" mean? Usually we need a "scoring function" or a "score function".
- Let's define the alignment score to be the total of column scores. And each column is assigned by a constant score depending on matching conditions.
- E.g. Match = 1, mismatch $=-1$, indel $=-1$. This is sometimes called the "score scheme".

Two Example Alignments

- AATGCGA-TTTT - イ ll | 111. G-TG--AC'TTTC $=0$
$6-2-4$
$5-2-4$
$=-1$
- AATG-CGATTTT || | | G-TGAC-TTTC-

- +1 = match
- $-1=$ mismatch
- $-1=$ indel
edit distame
LC
- Which of the two alignments better?

