
SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls
Xinan Yan

University of Waterloo
xinan.yan@uwaterloo.ca

Arturo Pie Joa
University of Waterloo
apiejoa@uwaterloo.ca

Bernard Wong
University of Waterloo
bernard@uwaterloo.ca

Benjamin Cassell
University of Waterloo
becassel@uwaterloo.ca

Tyler Szepesi
University of Waterloo
stszepes@uwaterloo.ca

Malek Naouach
University of Waterloo

mm2naoua@uwaterloo.ca

Disney Lam
University of Waterloo
y7lam@uwaterloo.ca

ABSTRACT
In this paper we introduce SpecRPC, a speculative execution frame-
work that allows applications to concurrently execute dependent
operations both locally and through remote procedure calls. The
framework tracks dependencies among non-speculative and spec-
ulative operations and ensures that incorrect speculations do not
affect the correctness of applications that follow our suggested
design pattern. By using speculation to parallelize dependent oper-
ations, SpecRPC can significantly reduce application latency even
if only a fraction of the results can be correctly speculated. We eval-
uate SpecRPC by using it to implement Replicated Commit, a low-
latency distributed transaction commit protocol for geo-replicated
database systems. Our evaluation results show that, compared to
RPC frameworks that sequentially execute dependent operations,
SpecRPC can reduce the average transaction completion time of
Replicated Commit by 58%.

CCS CONCEPTS
• Software and its engineering → Middleware; Communica-
tions management; • Information systems→ Distributed data-
base transactions; • Networks → Application layer protocols; •
Computer systems organization→ Client-server architectures;

ACM Reference Format:
Xinan Yan, Arturo Pie Joa, Bernard Wong, Benjamin Cassell, Tyler Szepesi,
Malek Naouach, and Disney Lam. 2019. SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls. In 19th International Mid-
dleware Conference (Middleware ’18), December 10–14, 2018, Rennes, France.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3274808.3274829

1 INTRODUCTION
Many distributed applications perform a large number of remote
procedure calls (RPCs). For example, a Facebook front-end web
server performs as many as 392 RPCs to backend servers when gen-
erating a single HTTP response [12] for a page request. Generating

Middleware ’18, December 10–14, 2018, Rennes, France
2019. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in 19th
International Middleware Conference (Middleware ’18), December 10–14, 2018, Rennes,
France, https://doi.org/10.1145/3274808.3274829.

the response can take as long as 3.1 seconds which, given the low
latency of datacentre networks, suggests that many of the RPCs are
performed sequentially. Sequential execution of RPCs can be due
to insufficient resources leading to queuing at the involved servers.
However, with the increasing abundance of low-cost computing
resources in well-provisioned datacentres, sequential execution is
more likely because of dependencies between RPCs, where an RPC
invocation depends on the results of other RPCs. For instance, Song
et al. [36] demonstrate the prevalence of dependent RPCs, provid-
ing an example containing five dependent RPCs. Likewise, Bahl et
al. [2] and Natarajan et al. [29], also present complex dependencies
among networked services in enterprise applications.

Unlike most performance problems, providing additional re-
sources is minimally effective at reducing latency when sequentially
executing RPCs. Although faster networks and CPUs can reduce
transfer and processing time, latency improvements will likely be
incremental since network latency has only seen a modest reduc-
tion in the past three decades [34], and recent CPU improvements
mainly benefit concurrent operations. For cross-datacentre RPCs,
data replication and caching can in some cases significantly reduce
latency. Unfortunately, maintaining consistency between replicas
and caches can be challenging, and unless an application can accept
weak consistency guarantees, replication and caching are generally
only effective at reducing latency for read-only RPCs.

Speculative execution (SE) has been used to reduce latency in
operating systems [6, 30, 31, 42, 43], byzantine fault tolerance pro-
tocols [22, 44], and a number of other specialized applications [9,
23, 27, 41]. These systems take advantage of domain knowledge to
determine when the result of an expensive operation can be accu-
rately predicted. This predicted result can be used to speculatively
execute the dependent operations, allowing them to be executed
concurrently as long as the prediction is eventually shown to be
correct.

Although SE is a powerful technique for reducing latency, it
can introduce a significant amount of complexity to an applica-
tion. Currently, adding SE support to a new production-quality
application requires a significant investment in time and resources.
Therefore, previous work has only considered using SE for the
most performance-critical applications, and SE has only been im-
plemented in research prototypes.

https://doi.org/10.1145/3274808.3274829
https://doi.org/10.1145/3274808.3274829

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

In this paper, we introduce SpecRPC, a general RPC framework
for performing SE. A user application can be modified to predict the
result of an RPC, and use the SpecRPC framework to speculatively
execute the next operation, which can be a local function or another
RPC, based on the predicted result. The main goal of SpecRPC is
to simplify the integration of speculative techniques in distributed
applications, allowing for the pervasive use of speculation to reduce
application latency. SpecRPC facilitates development of applications
that leverage speculation, but it is up to developers to predict RPC
results as accurate prediction requires domain-specific knowledge.

To support SE in an RPC framework, each operation in SpecRPC
is given a state that characterizes its current status. Speculatively
executing an operation based on the predicted result of a pending
RPC causes the operation to enter a speculative state, and creates
a dependency between the operation and the RPC. An operation
in a speculative state will transitively cause subsequent dependent
operations to also be in a speculative state to form a dependency tree
where the branching factor depends on the number of predictions
made per operation. The dependency tree helps SpecRPC isolate
the different branches of SE, and determine which branches are still
valid as actual execution results become available.

Dependency tracking and the re-execution of computation based
on incorrect speculation are done automatically by SpecRPC. To
take advantage of speculation, a programmer only needs to return
speculative results when partial information is available. SpecRPC
provides a simple abstraction that should be familiar to any pro-
grammer who has used RPCs and callbacks; and it reduces the
adoption barrier for using speculation in distributed applications.

Overall, this paper makes three contributions:

• We present SpecRPC, a general, flexible and easy-to-use
framework for performing SE.

• We show that SpecRPC can fully parallelize complex com-
munication patterns involving multiple sequential RPC calls
from the same client, or an RPC call chain where an RPC
function calls another RPC.

• We evaluate the effectiveness of SpecRPC by using it to
implement a low-latency distributed transaction commit
protocol, Replicated Commit (RC) [26]. Our results show
that SpecRPC reduces the transaction completion time of RC
by 58% compared to the sequential execution of dependent
operations.

2 DESIGN PATTERNS
SpecRPC is an asynchronous RPC framework for Java where remote
calls return immediately to the caller. A dependent operation is spec-
ified as a callback function that executes after the RPC completes.
A callback function implicitly accepts the RPC’s return value as a
function parameter. The callback can issue additional RPCs with
callbacks, which allows clients to execute a sequence of dependent
RPCs by specifying a chain of callback functions.

An asynchronous RPC framework offers additional opportuni-
ties to perform operations in parallel compared to a synchronous
framework. For example, clients can continue execution on non-
dependent operations after issuing an RPC request. More impor-
tantly, for the purpose of speculative execution (SE), sequential
operations are completely specified by a callback function chain.

Therefore, by requiring that each callback function is implemented
as a method in a callback object that can only modify the object’s
data1, SpecRPC can encapsulate speculative results inside a collec-
tion of callback objects. This programming model allows SpecRPC
to ensure that speculative results are not revealed to the rest of the
application, and parallel speculations are isolated from each other.

Figure 1 illustrates an application that uses SpecRPC to paral-
lelize client-side and server-side computation, where the client
predicts the server’s computation result. The Math class in Fig-
ure 1 (a) is provided by the RPC server and exposes the plus method
to remote callers. The server’s main method specifies the neces-
sary boilerplate code to register the plus method, allowing remote
hosts to call this method. Instead of accepting a Math RPC object,
the register method accepts a factory object, which is used by the
framework to create a new Math object for each RPC request.

Inside themainmethod in Figure 1 (b), the client binds the remote
plus method to an RPC stub, and issues an RPC by executing the
stub’s call method. The call method takes as parameters a list of
predicted RPC return values and a callback factory. Upon receiving
a response from the server, the client uses the callback factory to
generate an instance of IncCB, and executes the callback with the
return value from plus as a parameter. Using factories enables the
framework to speculate multiple times with different predicted
values, where each SE creates a different RPC or callback object.
By specifying client-predicted return values, SpecRPC allows SE to
begin even before the RPC has been sent to the server.

A SpecRPC call immediately returns a future object that eventu-
ally acquires the return value of the callback method from the final,
non-speculative callback object. The caller can retrieve this value
by calling getResult on the future object, which blocks until the
return value is available. The framework ensures that the method
returns a non-speculative result. In the example from Figure 1, the
client will block until the future receives 4 from the callback.

2.1 Single-Level Speculation
In a traditional RPC framework, operations that depend on an
RPC’s return value must wait until the RPC completes. This is
illustrated in Figure 2 (a) where the local operation can only begin
after receiving the RPC return value. However, in some applications,
clients can often predict RPC results. For example, an application
may perform an RPC repeatedly with the same parameters and,
in most cases, receive the same return value. The client can use
a client-side cache to predict the RPC result. Using SpecRPC, the
client can use this prediction to speculatively execute the dependent
operations, specified as callback objects, immediately after invoking
the RPC. As shown in Figure 2 (b), the execution times for the
RPC and its dependent operations overlap. We call this client-side
speculation, where the client predicts RPC results.

In addition to client-side speculation, SpecRPC also supports
server-side speculation in which the server predicts the RPC’s re-
turn value before it completes its execution of the RPC function.
This is useful for RPC functions that execute slowly, but their results
can be accurately predicted after a small amount of preliminary

1 This is an advisory programming model for correctness rather than a mandatory
design pattern. Applications can choose to modify data outside of callback objects if
they are certain that it will not affect the correctness of the application.

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

1 //RPC implementation
2 public class Math implements SpecRpcHost{
3 public Integer plus(Integer a, Integer b){
4 return a + b;
5 }
6 ... // Defines other RPCs
7 }
8 //RPC factory
9 public class MathFactory implements SpecRpcHostFactory{
10 public SpecRpcHost getRpcHostObject (){
11 return new Math ();
12 }
13 public String getRpcHostClassName () {
14 return Math.class.getName (); // Returns "Math"
15 }
16 }
17 // Server implementation
18 public class Server {
19 public static void main(String args []){
20 SpecRpcServer rpcServer = new SpecRpcServer ();
21 rpcServer.initServer("./ server.config");
22 // Registers an RPC with its name , factory ,
23 // return value type , and parameter types.
24 rpcServer.register("plus", new MathFactory (),
25 Integer.class , Integer.class , Integer.class);
26 rpcServer.execute (); // Starts the RPC server
27 }
28 }

(a) Server-side code.

1 // Callback implementation
2 public class IncCB implements SpecRpcCallback{
3 public Object run(Object rpcResult){
4 return (Integer)rpcResult + 1;
5 }
6 }
7 // Callback factory
8 public class CBFactory implements SpecRpcCallbackFactory{
9 public SpecRpcCallback createCallback (){
10 return new IncCB ();
11 }
12 }
13 // Client implementation
14 public class Client{
15 public static void main(String args []){
16 SpecRpcClient.initClient("./ client.config");
17 //Binds an RPC with its class name , method name ,
18 // return value type , and parameter types
19 RpcSignature plus = new RpcSignature("Math", "plus",
20 Integer.class , Integer.class , Integer.class);
21 SpecRpcClientStub stub =
22 SpecRpcClient.bind("localhost", plus);
23 List preds = Arrays.asList (3); // Predicts plus (1,2)
24 SpecRpcFuture future =
25 stub.call(preds , new CBFactory(), 1, 2); // Issues RPC
26 future.getResult (); // Callback result is 4
27 }
28 }

(b) Client-side code.

Figure 1: An example illustrating the server-side and client-side code for a simple SpecRPC application.

computation. In Figure 2 (c), the client must wait until it receives the
server’s prediction before it can speculatively execute its dependent
operations. The server can return a prediction by calling specReturn
any time during the RPC execution. Multiple predictions can be
made by both the client and the server. Each prediction creates a
new callback object that executes independently.

For both client-side and server-side speculation, the framework
can determine if the return value prediction is correct after the
client receives the RPC’s actual return value. In the case where the
prediction was correct, the result from the SE that is performed via
callback objects can be returned to the application. Otherwise, the
framework will dispose of the speculative results and re-execute
the dependent operations using the actual RPC return value. We
will explain how SpecRPC manages predictions and speculative
results in Section 3.

2.2 Multi-Level Speculation
In order to provide significant performance benefits for workloads
with long chains of sequential operations, a speculation framework
must support having multiple dependent operations execute con-
currently. This allows an application to perform SEs that depend on
the correctness of multiple predictions. We call an SE that depends
on more than one prediction a multi-level speculation (MLS).

Figure 3 shows a sample sequence of operations that could bene-
fit from using MLS. In this example, an analysis server (AS) provides
a data analytics service, a data server (DS) manages user data, and a
client is interested in making a purchase based on both individual
user information and aggregate information from a specific user-
base. The client first retrieves the purchasing interests (PIs) of a
specific user from AS by invoking an RPC, getPI. To compute the
user’s PIs, AS issues an RPC, getPH, to DS for the user’s purchase
history (PH). Once getPI completes, the client invokes another RPC,

getAI, to AS to retrieve aggregate information (AI) from the user-
base that shares the same PIs as the user. This AI is generated in
real-time by AS. Finally, once getAI completes, the client performs
additional local computation, comp, before ending its execution.

With speculation, parts of the above three RPCs and the client’s
local computation can execute in parallel. To service getPH, DS
must retrieve the PH pertaining to the user specified in the request.
Although the data may be available locally, additional synchroniza-
tion delays may be introduced if DS is not the primary replica for
the data and linearizable consistency is required. However, DS can
send a speculative response using its local data to allow the caller to
continue its execution without waiting for the synchronization to
complete. Similarly, when servicing getAI, AS may be able to send a
speculative response back to the client before it finishes generating
the requested AI. The speculative response may be taken from the
cached response of a previous request either for the same userbase,
or for a related userbase with a similar PI.

Figure 3 (b) illustrates that, by predicating the result of getPH,
AS can speculatively return the result of getPI. This will cause
the subsequent operations to be speculatively executed in parallel.
Figure 3 (b) also shows that, by speculatively executing getAI and
predicting its result, comp can execute in parallel with both getPH
and getAI. This is an MLS example because the SE of comp depends
on more than one prediction.

The previous example demonstrates the need for a speculation
framework to have each speculative RPC transitively depend on
all of the predicted return values that its caller relies on. It also
illustrates the challenge in tracking dependency information across
RPCs.

3 ARCHITECTURE
The SpecRPC architecture consists of four layers, as shown in Fig-
ure 4, client and server libraries register functions for remote access,

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

(a) Traditional RPC

(b) SpecRPC with client-side prediction

(c) SpecRPC with server-side prediction

Figure 2: An example of single-level speculation.

expose the functions based on their signatures, and asynchronously
issue remote RPCs. The SpecRPC controller manages speculative de-
pendencies, uses callback and RPC factories to create new callback
and RPC objects, and provides isolation between concurrent call-
backs and RPCs. User-provided callback and RPC factories create
new callback and RPC instances to handle RPC results and requests.
Each callback or RPC instance has an object, specObj, which encap-
sulates the instance’s speculative state. An RPC call inside a callback
or RPC inherits the caller’s speculative state through the specObj.
The communication module manages connections between clients
and server.

In the following sections, we describe how the different compo-
nents work together to manage speculative dependencies across
multiple nodes, handle incorrect predictions, and ensure that the fi-
nal result is equivalent to what a traditional RPC framework would
return.

3.1 Speculative State
In SpecRPC, computation is performed entirely within callback and
RPC objects. A callback object is created when a client receives an
RPC response, and an RPC object is created when a server receives
an RPC request. A callback performs SE if it receives a predicted
RPC response instead of an actual RPC response. If a callback issues
an RPC request while it is performing SE, the RPC object created
from the request will also speculatively execute its computation.
When the actual RPC response arrives, the speculatively executed

(a) Traditional RPC

Client
done

1

2

3

5
6

8

9

10

11
12

1 getPI

2 getPH

3 predicted getPH result

4 SE of getPI

6 getAI request (spec.)

7 SE of getAI

8 predicted getAI result

9 SE of comp

10 getPH result (actual)

11 getPI result (actual)

4

5 getPI result (spec.)

7

12 getAI result (actual)

Analysis
Server

Data
Server

(b) SpecRPC

Figure 3: An example of multi-level speculation.

callback and its dependents will be discarded if the prediction was
incorrect. Otherwise, they will be marked as actual execution.

To distinguish between actual and speculative execution, each
callback and RPC object contains a speculative state that describes
its speculation status and dependency information. This state is
encapsulated as a specObj.

An RPC’s speculative state can be one of the following: caller
speculative, speculation correct, and speculation incorrect, where the
last two states are terminal states. Figure 5(a) illustrates the state
transitions for RPC objects. An RPC is in speculation correct state if
the caller, which can be a client, an RPC object or a callback object,
is not dependent on any predicted values. This is always the case
when the caller is a client because a client’s RPC request cannot be
dependent on a predicted value. It is also the case when the caller is
an RPC or callback object that is in speculation correct state. An RPC
is in caller speculative state if its caller is dependent on a predicted
value. This is equivalent to the caller being in a non-terminal state.
Finally, an RPC transitions from the caller speculative state to the
speculation incorrect state if its caller transitions to the speculation
incorrect state.

Each callback is associated with an RPC and executes with the
RPC’s return value. Multiple callbacks can be associated with the
same RPC because of multiple predictions for the return value. A
callback can have one of the following speculative states: caller
speculative, callee speculative, speculation correct, and speculation
incorrect. Figure 5(b) illustrates the state transitions for callback
objects. A callback is in speculation correct state if it receives a non-
predicted return value from its RPC and the RPC is in speculation
correct state. A callback is in callee speculative state if it executes
with a predicted return value of its RPC. Upon receiving the actual
return value, the callback transitions to the speculation correct or

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

Figure 4: SpecRPC architecture.

speculation incorrect state depending on the prediction, or transi-
tions to caller speculative state if its RPC’s caller is in a non-terminal
state, i.e., either caller speculative or callee speculative. Finally, a
callback in caller speculative state transitions to a terminal state
once its RPC’s caller transitions to a terminal state.

3.2 Managing Dependencies
In single-level speculation, a speculative callback depends on the
correctness of a single prediction. In order to keep track of de-
pendencies, SpecRPC would only need to maintain a mapping be-
tween predictions and their corresponding speculative callbacks.
Dependency management becomes more challenging in multi-level
speculation as callbacks and RPCs can be dependent onmultiple pre-
dictions. These dependencies are modeled as a tree with each RPC
and callback object representing a node. The root in a dependency
tree is the first RPC object that is issued by the user application.
The root is always in the speculation correct state. A callback object
created on a predicted return value is a child node of the RPC in
the dependency tree.

A node’s speculative state depends on that of its parent node (if
any). Each node only needs to track its parent node’s state transition
and pass the state change of itself to its child nodes. SEs that are
based on the same predicted return value of an RPC form a subtree
under the RPC. Also, a path from the root to a leaf in the tree links
dependent non-speculative and speculative execution. There is only
one path standing for the actually non-speculative execution.

Figure 6 shows an example of a dependency tree in a bad scenario
where predicted RPC responses are always incorrect. In this exam-
ple, a client performs two dependent RPCs, rpc1 and rpc2, followed
by a local operation that is executed in callback2. For each RPC in-
vocation, the client receives an incorrect prediction from the server.
After receiving a prediction result for rpc1, callback1 is created to
perform rpc2. Therefore, rpc2 is a child node of callback1 which
in turn is a child node of rpc1. As rpc2 executes, it also returns a
predicted result which creates callback2 to run the dependent local
operation. In this example, rpc2 finishes before rpc1 even though
it starts after rpc1. When rpc2 finishes, it returns an actual result
that is different than its previous predicted result. Therefore, a new
callback object callback ′2 is created and callback2 is abandoned.
Later, when rpc1 finishes with an actual result that is different than
its previous predicted result, the whole subtree of callback1 is aban-
doned and a new callback ′1 is created to invoke rpc

′
2. The predicted

result of rpc ′2 creates callback
′′
2 , which again will be abandoned

when actual result of rpc ′2 is different from its predicted result. Fi-
nally, with the completion of rpc ′2, callback

′′′
2 is created to finish

the remaining execution. Even with three mispredictions, the client
only sees the actual execution path from rpc1 to callback ′′′2 .

(a) State transitions of an RPC object.

(b) State transitions of a callback object.

Figure 5: State transitions.

Figure 6: An example of a dependency tree.

In both single and multi-level speculations, SE includes local
operations and RPCs that will be executed remotely. As a result,
the dependencies between predictions and SEs span multiple nodes.
SpecRPC uses dedicated state-change messages to propagate state
change events between remote callback and RPC objects. This is
discussed in Section 3.4.

3.3 Handling Incorrect Predictions
Upon receiving the actual result for an RPC, SpecRPC evaluates
the accuracy of previous predictions of that result, and retains call-
backs based on correct predictions while setting callbacks based
on incorrect predictions to the speculation incorrect (SI) state. Any
callback or RPC object that depends on an object in SI state must
also be set to SI state. Objects in SI state are discarded, and their

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

computations are abandoned. This can be done safely without re-
quiring data rollback since a callback or RPC in SpecRPC should
only modify the fields in its associated object and should not have
any side-effects. This advisory requirement is not enforced as it
is up to application to decide the scope of side-effects caused by
modifying data outside of a callback or RPC object.

Immediately terminating a discarded callback or RPC may re-
quire interrupting its computation, which can be difficult to perform
cleanly in a language without non-local exception passing where
a thread can raise an exception in a different running thread. To
avoid this problem, SpecRPC allows callbacks and RPCs in SI state
to finish execution before being abandoned. However, SpecRPC
immediately terminates these callbacks and RPCs if they attempt
to perform further speculative operations via SpecRPC, such as in-
voking a new RPC, returning a prediction to the client, or blocking
on an operation that will generate visible output (see Section 3.5).

In the case where none of the previous predictions of an RPC
result were correct, a new callback is created using the RPC’s actual
result. This ensures that forward progress is made even in the
absence of an accurate predictor.

3.4 Propagation of Speculative State
The speculative state of a callback or RPC object depends on the
state of the caller. Therefore, when a callback or RPC issues an RPC
request, the caller’s speculative state is sent alongside the RPC’s
parameters. Similarly, each RPC response contains the speculative
state of the RPC and a field that specifies whether it is returning
a predicted result or an actual result. The framework uses this
information to create a callback object in the correct speculative
state.

In multi-level speculation, when the caller of an RPC transitions
to a speculation correct or speculation incorrect state from a non-
terminal speculative state, both the state of the remote RPC instance
and the corresponding local callback must be updated. To notify
the RPC instance on the remote node, the caller sends a dedicated
message indicating its new speculative state. Both the RPC and
callback perform their own speculative state change based on the
caller’s new speculative state. This change is further propagated if
another RPC is invoked by either the callback or RPC.

3.5 Implementation
The SpecRPC framework consists of approximately 3000 lines of
Java code. The source code is available online at [37]. In SpecRPC,
RPCs are registered by servers as signatures containing an RPC
name, a return type, parameters and a server address. RPC signa-
tures are stored in a file that is synchronized between the servers
and clients using third-party tools, such as ZooKeeper [18].

3.5.1 Tracking Dependencies. SpecRPC tracks the dependencies
between speculative and non-speculative executions by mapping
a callback or RPC object to its parent node in a dependency tree.
Instead of implementing the dependency tree as a centralized data
structure, each node only tracks its child nodes. When a node’s
speculative state changes, SpecRPC propagates the changes only to
its child nodes.

Applications using SpecRPC do not need to explicitly track
speculation-related dependencies or inform the framework of what

it depends on. When a prediction is incorrect, SpecRPC will discard
all of the speculative callback and RPC objects that depend on the
prediction.

3.5.2 Preventing Side-Effects. SE should not result in output or
state changes that are irrevocable. Therefore, SpecRPC recommends
that callbacks and RPCs only modify the fields in their objects,
and not have any side-effects. SpecRPC’s factory design pattern
creates a new object when it executes a callback or RPC, and it
stores speculative states inside that object. This isolates parallel
SEs, which allows an application to make multiple predictions.

An application can optionally install a rollback function for mis-
speculation in a callback or RPC. The SpecRPC framework will
execute the rollback function before discarding incorrect states. This
enables an application to extend its speculative states beyond the
fields inside a callback or RPC object. For example, an application
can store speculative states in a local database and issue a rollback
for a mis-speculation.

In scenarios where it is impossible to avoid irrevocable changes
or output in SE, the SpecRPC framework provides specBlock, a
method that causes a speculative callback or RPC to block until it
is in a non-speculative state. An application can call specBlock just
before operations that will cause side-effects. Once the speculation
is determined to be correct, SpecRPC will continue the application’s
execution. If the speculation is incorrect, the specBlock function
will throw a mis-speculation exception.

4 APPLICATIONS
In this section, we describe how we used SpecRPC to implement
a speculation-enabled version of Replicated Commit [26], a dis-
tributed transaction commit protocol for geo-replicated database
systems. Also, we perform a theoretical analysis on the expected
speedup from using speculative execution (SE) on another applica-
tion, a multi-objective optimizer.

4.1 Replicated Commit
Replicated Commit (RC) [26] is a distributed transaction commit
protocol for geo-replicated database systems. In a geo-replicated
system, a transaction’s completion time largely depends on the
number of wide-area network roundtrips that the transaction re-
quires to complete.

RC introduces a commit protocol that only requires one wide-
area network roundtrip to complete both 2PC and consensus among
replicas across datacentres. However, to achieve this, local read
operations have to be replaced with quorum reads across multiple
datacentres. Each quorum read introduces one wide-area network
roundtrip. Writes are not affected as they are buffered until the
transaction commits. RC’s evaluation shows that, as the number
of dependent reads increases, the transaction completion time is
quickly dominated by read latency.

SE can parallelize the execution of dependent reads in RC in
order to reduce the overall completion time of a transaction. This is
possible because the read results from the first responding quorum
member are often the same as the final quorum results. Therefore,
we can use the first response to speculatively execute the next read
operation. In RC, because data is fully replicated in every deployed
datacentre, the first responding member will always be from the

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7 8 9

M
ax

 S
p
ee

d
u
p

λ (unit: T)

2 stages
3 stages
4 stages
5 stages

Figure 7: Maximum speedup versus λ.

local datacentre, and its response will return almost immediately.
Note that we only perform SE for quorum reads before starting
the commit protocol. Before calling commit on a transaction, an
RC client will issue a specBlock (see Section 3.5) to wait until all
quorum reads become non-speculative. We have implemented a
fully working prototype of the SpecRPC version of RC, and we
evaluate its performance in Section 5.

4.2 Multi-Objective Optimizer
Many scientific computing problems require solving optimization
problems (OPs) with multiple objectives. A common approach for
solving multi-objective problems is to construct them as a series of
dependent OPs in which the output of one OP serves as an input to
the next OP. Each of these intermediate OPs can be solved using
an optimizer such as CPLEX [8] and Gurobi [16]. Therefore, the
completion time is largely dependent on the performance of the
optimizer, and the number of OPs in the series. Although most
optimizers benefit from additional CPUs, their scalability is limited.
Most do not achieve additional speedup beyond 16 processors [21].

SE can leverage additional CPUs to reduce computation time of
dependent OPs by overlapping their computation. With SpecRPC,
each OP can be registered as an RPC function, and the OPs can be
deployed on a group of server nodes. To execute an OP, a client
node issues an RPC to a server. Before the optimization is complete,
the server can return its current best solution to the client. The
client can use this result to issue an RPC to another server in order
to speculatively execute the next OP. The current best solution
serves as a prediction for the final result from the optimizer. If the
prediction is correct, where correctness is based on the user’s equiv-
alence definition, there will be a reduction in the total completion
time. The correctness probability depends on the amount of time
the function was allowed to run before the current best solution
was retrieved. This is because the more time the optimizer is given
to run, the more likely that it has found the optimal result.

Assuming that there are n dependent OPs (stages), we define
Slat as the speedup of using SE to complete the n stages compared
to sequentially executing themwith the same total number of CPUs.
We also defineTnew andTold as the expected completion time with
and without SE, respectively. Therefore, we have Slat =

Told
Tnew .

In this analysis, we assume there are n ∗N total CPUs. We define
the amount of time it takes for stage i’s optimizer to complete as:

Ti = дi (m), wherem is the number of CPUs, and дi is a monotoni-
cally increasing function ofm. Whenm is above a threshold, the
increase ofTi is negligible. We also define the prediction correctness
percentage at stage i as: Pi = fi (ti), where ti is the amount of time
that stage i’s optimizer executes before the best current solution
was retrieved. We denote Ei, j as the expected completion time of
executing all stages from i to j. Ei,n can be recursively calculated
as follows:{

En,n = Tn
Ei,n = Pi ∗ (ti + Ei+1,n) + (1 − Pi) ∗ (Ti + Ei+1,n)

(1)

where 1 ≤ i < n. The last stage’s completion time is alwaysTn , and
no prediction occurs at this stage.

By solving the recursion in Equation (1), we have Tnew :

Tnew = E1,n =
n−1∑
i=1

[Pi ∗ (ti −Ti) +Ti] +Tn (2)

where 0 ≤ ti ≤ Ti , and Ti = дi (N) since, with SE, it is possible that
all n stages run in parallel, so each stage can only use N CPUs.

Without SE, each stage can use the total n ∗N CPUs, so we have
Told :

Told =
n∑
j=1

Tj =
n∑
j=1

дj (n ∗ N) (3)

With a fixed N , we can determine the set of ti s that maximize the
total speedup, Slat .

We illustrate our model with a two-stage example where the
stages have the same completion time T . In this example, there are
enough CPUs such that using N and 2N CPUs at each stage will
achieve the same completion time, i.e., |д(N) − д(2N)| < ϵ , where
ϵ is negligible. We also assume that the prediction correctness
percentage at the first stage can be described as a cumulative dis-
tribution, P = 1 − exp(−λt), where λ is a constant. This is because
the convergence rates of many multi-objective optimizations have
been shown to follow an exponential function over computation
time [1, 3, 35]. From Equations (2) and (3), we have Slat :

Slat =
2T

(1 − exp(−λt)) ∗ (t −T) + 2T
(4)

where 0 ≤ t ≤ T . The goal is to find t0 to maximize the speedup,
Slat . This is equivalent to solving:

1 + exp(−λt0) ∗(λ(t0 −T) − 1) = 0, 0 ≤ t0 ≤ T (5)

We have further generalized the previous example to support
more than two stages. Figure 7 illustrates the relationship between
the maximum Slat and λ for different number of stages. It shows
that the maximum Slat increases with an increase in the prediction
rate. This is not surprising since a higher prediction rate results
in fewer re-executions of the stages. The figure also shows that
for a given prediction rate (i.e., a fixed value of λ), the maximum
speedup increases with more stages.

5 EVALUATION
In this section, we first use a microbenchmark to evaluate the
performance of SpecRPC, and then we examine the performance
improvements in Replicated Commit (RC) [26] when using Spec-
RPC. For comparison we use Google’s open-source RPC framework,

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

g T 0 10 20 30 40 50 60 70 80 90 100
Correct Prediction Rate per RPC (%)

0

10

20

30

40

Re
qu

es
t C

om
pl

et
io

n
Ti

m
e

(m
s) g: gRPC

T: TradRPC

(a) Latency versus correct prediction rate

0 2 4 6 8 10
of RPCs per Request

0

20

40

60

80

100

Re
qu

es
t C

om
pl

et
io

n
Ti

m
e

(m
s) gRPC

TradRPC
SpecRPC

(b) Latency versus # of RPCs per request

gRPC TradRPC SpecRPC0

200

400

600

800

Ne
tw

or
k

Ba
nd

wi
dt

h
Us

ag
e

(k
bs

)

Client Sending Rate
Client Receiving Rate
Server Sending Rate
Server Receiving Rate

(c) Network bandwidth usage

Figure 8: Microbenchmark results.

gRPC [14], as a baseline. Since gRPC has more features than Spec-
RPC, which may increase its latency, we also compare our system
with TradRPC, an RPC framework sharing much of SpecRPC’s code
base without speculation.

Our experimental testbed uses standard server-class machines,
each of which has two 6-core 2.10 GHz Intel Xeon E5-2620 v2 CPUs
and 64 GB RAM. The machines are connected to a 1 Gbps Ethernet
network. Each experiment consists of 5 runs, and each run lasts 60
seconds during which we measure the performance of the system
throughout the middle 30 seconds.

5.1 Microbenchmark
Our microbenchmark consists of 16 clients with each performing
a sequence of dependent RPCs, defined as a request, to multiple
servers. Each RPC sends and receives 64 bytes of data. Unless spec-
ified, a request consists of 4 RPCs, each of which requires 10 ms to
complete. The client issues one request at a time, and each client is-
sues 10 requests per second. This system load allows us to examine
the performance of SpecRPC when sufficient system resources are
available.

While executing a request by using SpecRPC, the client makes
a prediction for each RPC result. We define the probability of the
prediction being correct as the correct prediction rate per RPC. Fig-
ure 8 (a) shows themean completion time of requests under different
correct prediction rates per RPC. Compared with the sequential
execution of RPCs via using gRPC and TradRPC, SpecRPC achieves
up to 75% reduction in request completion time. When prediction
is always incorrect, SpecRPC introduces approximately 0.1 ms of
overhead compared with TradRPC, which is negligible in a request
that requires more than 40 ms to complete. Our experiments show
that gRPC has slightly higher overhead than both TradRPC and
SpecRPC. This may be because gRPC provides additional features
that are not supported by TradRPC and SpecRPC. The results also
show that even with only a 50% correct prediction rate per RPC,
SpecRPC still provides about a 40% reduction in request completion
time compared to gRPC.

We further examine the performance of SpecRPC by varying the
number of dependent RPCs in a request. In the following exper-
iments, the correct prediction rate per RPC is set to be 90%. Fig-
ure 8 (b) shows that the mean request completion time for SpecRPC
increases more slowly than for gRPC and TradRPC. As expected,
the request completion times for both gRPC and TradRPC increase
linearly with the number of dependent RPCs per request. SpecRPC
experiences a small increase in its request completion time with
additional dependent RPCs because only incorrect predictions lead
to sequential execution of RPCs.

Lastly, we examine the network bandwidth usage of the three
different RPC frameworks. Figure 8 (c) shows that TradRPC has
higher network bandwidth usage than gRPC. This is because gRPC
has a more optimized implementation of message serialization than
TradRPC. The results also show that SpecRPC has higher network
bandwidth usage than TradRPC. This is because SpecRPC must
re-execute some of its RPCs due to incorrect predictions.

5.2 Replicated Commit
In this section, we examine the performance improvements in Repli-
cated Commit (RC) when using SpecRPC. We implement an RC
prototype in an in-memory key-value store, and our implementa-
tion asynchronously persists transaction logs to SSDs. We compare
three versions of RC, one using gRPC [14] as a baseline, one using
SpecRPC to enable speculative execution, and one using TradRPC
which shares much of SpecRPC’s code base without speculation.
Our RC prototype using gRPC consists of approximate 4000 lines
of Java code, while SpecRPC introduces an additional 100 lines
of changes on the server side and about 300 lines of changes on
the client side. These changes are to modify RPC registrations and

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

Ireland Seoul
Oregon 140 122
Ireland - 243

Table 1: RTT latencies (ms) between datacentres from [28].

5 10 15 20 25 30 35 40 45 50
Number of Operations per Transaction (ops/txn)

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400

La
te

nc
y

(m
s)

gRPC Txn Completion Time
gRPC Txn Commit Latency
TradRPC Txn Completion Time
TradRPC Txn Commit Latency
SpecRPC Txn Completion Time
SpecRPC Txn Commit Latency

Figure 9: Mean latency versus the number of operations per
transaction with YCSB+T.

0 0.2 0.4 0.6 0.8 1
Read Probability

0

100

200

300

400

500

600

700

Tr
an

sa
ct

io
n

Co
m

pl
et

io
n

Ti
m

e
(m

s)

gRPC
TradRPC
SpecRPC

(a) Median

0 0.2 0.4 0.6 0.8 1
Read Probability

0

200

400

600

800

Tr
an

sa
ct

io
n

Co
m

pl
et

io
n

Ti
m

e
(m

s)

gRPC
TradRPC
SpecRPC

(b) 99th percentile

Figure 10: Latency versus read probability with YCSB+T.

invocations in order to introduce speculation on read results. Our
SpecRPC changes do not modify the commit protocol.

5.2.1 Experimental Setup. In our experiments, we use the Linux
traffic control utility (tc) to set the network latency between ma-
chines in order to emulate the geo-distributed environment spec-
ified in [28], which consists of three datacentres. The roundtrip
network latencies between datacentres are shown in Table 1.

Our transactional key-value store contains 10 million key-value
pairs. The data is sharded into three partitions, with each partition
having a replica at every datacentre. One RC server manages one
replica. Our evaluation uses close-loop experiments, in which a
client sends transactions back-to-back, and there are 16 clients in
each datacentre.

Our evaluation uses two workloads, YCSB+T [11] (an exten-
sion of the YCSB workload [7] with transactional support) and
Retwis [24] (a Twitter-like workload). By default, the data access
pattern in both workloads follows a Zipfian distribution with al-
pha = 0.75.

5.2.2 YCSB+T Workload. We first use YCSB+T to repeat the RC
experiments in [26]. Without using speculation, read latency dom-
inates the transaction completion time as the number of reads
increases. In this experiment, the number of operations (reads and
writes) varies from 5 to 50, and the ratio of reads and writes is
1:1 (mirroring the values used in the original experiments in [26]).
Figure 9 shows that the average transaction completion time of
our RC prototype with gRPC and TradRPC increases linearly with
the number of reads, which matches the results in [26]. In contrast,
the average transaction completion time of the SpecRPC version
of RC is nearly independent of the number of reads in a transac-
tion. Going from 5 to 50 operations per transaction, the transaction
completion time only increases by 23% for SpecRPC, compared to
more than 600% for the non-speculative systems. This low increase
in completion time is a result of correct speculation, which allows
SpecRPC to parallelize dependent read operations. This experiment
also shows that the read result from the first responding replica is a
good predictor of the final result of a quorum read. This approach
correctly predicted the final quorum read result with more than
95% accuracy.

We further examine the impact of the probability that a request
in a transaction is a read (instead of a write) on transaction comple-
tion time. In this experiment we use 5 operations per transaction.
Figure 10 shows both the median and 99th percentile of the trans-
action completion time. As expected, with gRPC and TradRPC, the
median transaction completion time grows linearly with the read
probability. The tail transaction completion time grows even more
quickly, as even with a 0.2 probability, the transactions in the tail
consist mostly of read operations. At 0.6 probability and higher,
nearly all of the transactions in the tail consist of 5 read operations.
With SpecRPC, the median and tail completion times are largely
unaffected by read probability. This is because the correct predic-
tion rate for this workload is above 99%, with the rate growing with
increasing read probability.

5.2.3 Retwis Workload. In this section, we use a Twitter-like work-
load, Retwis, to evaluate the performance of RC using SpecRPC.
We use the same transaction profile as the Retwis workload in [46],
which is shown in Table 2. Figure 11 shows the CDF of RC’s trans-
action completion time when using gRPC, TradRPC, and SpecRPC.

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

Transaction Type # gets # puts workload%
Add User 1 3 5%

Follow/Unfollow 2 2 15%
Post Tweet 3 5 30%

Load Timeline rand(1, 10) 0 50%
Table 2: Retwis transaction profile from [46]

0 200 400 600 800 1000 1200 1400
Transaction Completion Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 0.5

0.95

gRPC
TradRPC
SpecRPC

Figure 11: Transaction completion time with Retwis.

Compared with gRPC and TradRPC, SpecRPC reduces the average
transaction completion time by 58%.

We then adjust the Zipfian alpha value to examine the impact of
transaction contention on the performance of these systems. Fig-
ure 12 (a) and (b) show that SpecRPC’s abort rate is only marginally
higher than gRPC and TradRPC despite processing twice the num-
ber of transactions per second in this closed loop experiment with a
fixed number of clients. For example, when the Zipfian alpha value
is 0.9, using SpecRPC introduces about a 1% higher abort rate than
using gRPC and TradRPC. However, SpecRPC is able to commit
142 transactions per second, while gRPC and TradRPC can only
commit 62 and 63 transactions per second, respectively. The higher
transaction processing rate of SpecRPC is due to its transaction
completion time being half of that of the other systems.

In order to measure the maximum throughput of these systems,
we must saturate them with client requests. To accomplish this
in our cluster, we have to reduce the computing resources of the
RC servers. For these experiments, we set the roundtrip network
latency between datacentres to be 5ms and limit the number of CPU
cores per RC server. Since the number of CPU cores is artificially
limited, these experimental results do not represent the maximum
throughput of the systems in practice. Instead, these experiments
aim to compare the throughput of the three systems under the same
resource limit and to examine the impact of increasing computing
resources on the performance of the three different systems.

As shown in Figure 13, all three systems have near perfect
speedup in throughput when increasing the number of cores from
2 to 3, where the throughput is indicated by the vertical lines in
the graphs. As expected, SpecRPC’s throughput is lower than Trad-
RPC’s due to speculation overhead. Surprisingly, gRPC has a lower
throughput than both other systems, whichmay be due to additional
features that it provides which are not supported by SpecRPC and

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Zipf Alpha

0
10
20
30
40
50
60
70
80
90

100

Ab
or

t R
at

e
(%

)

gRPC
TradRPC
SpecRPC

(a) Abort rate

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Zipf Alpha

0

50

100

150

200

of

 C
om

pl
et

ed
 T

xn
s /

 se
co

nd gRPC Committed Txns
TradRPC Committed Txns

SpecRPC Committed Txns
Aborted Txns

(b) Number of completed transactions

Figure 12: Retwis workload with varying alpha values.

TradRPC. Although SpecRPC introduces processing overhead, we
believe that this is a reasonable tradeoff since throughput can be in-
creased by increasing the number of cores or data shards, whereas
transaction completion cannot be reduced with more resources
without speculation. In this experiment, it is not possible for gRPC
or TradRPC to achieve SpecRPC’s 14 ms transaction completion
time.

6 RELATEDWORK
Speculation is a latency-hiding technique that enables parallel exe-
cution of dependent operations. This is especially useful in cases
of otherwise unavoidable or lengthy wait times. This section com-
pares SpecRPC to previous systems that implement speculation or
other latency-hiding techniques.

6.1 OS-Level Speculation
Speculator [30] modifies the Linux kernel to provide OS-level SE
support. It can reduce the latency of a distributed file system by
allowing applications that would normally block during a remote
I/O operation to continue execution using a predicted result. Spec-
ulator can also reduce the latency of synchronous local file I/O
operations [31]. Because speculation is provided as part of the OS,
Speculator must checkpoint the state of the entire process in order
to undo changes when SE occurs on an incorrect prediction.

OS-level SE has also been proposed to reduce the I/O latency
for microsecond devices [42]. However, its effectiveness is limited

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

2828

gRPC 2 cores
gRPC 3 cores

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

Tr
an

sa
ct

io
n

Co
m

pl
et

io
n

Ti
m

e
(m

s)

3030

TradRPC 2 cores
TradRPC 3 cores

0 500 1000 1500 2000 2500 3000 3500
Throughput (# of Completed Txns / second)

0

20

40

60

1414

SpecRPC 2 cores
SpecRPC 3 cores

Figure 13: Average transaction completion time versus
throughput with Retwis.

by the narrow system call interface and the lack of application se-
mantics [43]. Comparatively, SpecRPC supports SE across multiple
systems, and it provides a high-level framework that reduces the
barrier to using speculation in large-scale distributed applications.

6.2 Application-Level Speculation
Supporting SE at the application level can leverage application
semantics to provide additional latency reduction compared to OS-
level approaches. Fast Track [20] and Prospect [38] allow users to
implement fast but unsafe code for SE. Wester et al. [43] extend
Speculator to enable developers to define customized speculation
policies. Thread-level speculation techniques [4, 10, 19, 32, 33] can
increase the parallelism of a sequential program to reduce the total
execution time. Most of these speculation frameworks only support
SE on a single machine. In contrast, SpecRPC provides application-
level SE support for distributed applications.

SE has been used to improve the performance of Byzantine fault
tolerance systems. The scope of the speculation techniques used
in these systems is fairly limited, as each system aims to address a
specific performance problem without introducing significant com-
plexity to an already complex system. For example, Zyzzyva [22]
only performs speculative execution on a single machine, and PBFT-
CS [44] does not support propagating speculative results between
servers.

Many other applications also have their own SE support for
workload-tailored benefits. SpecHint [6, 13] uses SE to hide hard-
disk latency in local file systems. Crom [27] speculatively prefetches
web page data and computes web browser layouts. Lange [23] uses

speculation to improve remote screen display protocols. Moreover,
SE is used to improve the performance of logging and replay sys-
tems [25, 41], to protect software from hardware failures [9], and
to detect run-time race conditions [40] and inconsistency in dis-
tributed systems [45].

These application-level approaches differ from SpecRPC by fo-
cusing on improving a specific application or protocol. SpecRPC
is a general framework for providing SE support for distributed
applications. Furthermore, most of these speculation systems were
designed from scratch and required significant effort to implement
and verify correctness. One of SpecRPC’s goals is to reduce the
barrier for using speculation in distributed applications.

Correctables [15] provides clients with server-side predictions
for data access in replicated-object storage systems. However, a
Correctables client has to implement its own dependency tracking
between speculative and non-speculative executions. In contrast,
SpecRPC is a more general framework that allows applications to
perform arbitrary SE on both clients and servers.

6.3 RPC Batching
RPC batching can reduce the latency of a client performing de-
pendent RPCs to a server. For example, BRMI [39] allows a client
to explicitly send multiple RPCs in a batch to a server. Batched
futures [5] implicitly defer a client’s RPCs until the results are re-
quested. However, RPC batching techniques cannot batch RPCs to
different servers or use speculation to execute dependent operations
in parallel.

7 DISCUSSION
A common pitfall to SE is that stateful execution is not correctly
undone after an incorrect speculation. We address this pitfall by
recommending or requiring SpecRPC users to follow design pat-
terns that avoid this problem. For example, instead of passing a
speculative object directly to a speculative callback, SpecRPC re-
quires users to follow a factory design pattern in which a new
speculative object is created for each callback that encapsulates all
intermediate results. This allows programmers to not worry about
cross-contamination between results from different speculative and
non-speculative executions.

Another potential issue with speculation is in supporting opera-
tions with side-effects that is outside of the control of the specula-
tion framework. We provide a specBlock function that prevents the
computation from proceeding until it is in a non-speculative state.
However, because SpecRPC is a user library, a decision that we
made to simplify and promote adoption, it cannot enforce correct-
ness in much the same way that a threading library cannot enforce
thread safety.

SpecRPC provides the necessary tools to enable a developer to
implement a speculative application without manually managing
dependencies, discarding incorrect speculations, and hiding specula-
tive state from non-speculative execution, which allows developers
to focus on leveraging their domain knowledge to improve predic-
tion rather than spending their time implementing a speculative
execution infrastructure. However, the developer must still make
reasonable decisions with respect to predictions, and must follow
provided guidelines to avoid potential problems.

Middleware ’18, December 10–14, 2018, Rennes, France X. Yan et al.

In addition to the applications described in Section 4, many
other latency-sensitive applications can benefit from SpecRPC. For
example, web applications often execute a chain of services to
generate a response for a client request. These applications can use
caches to predict service results, enabling services in the chain to
execute in parallel. Social network applications can also benefit
from speculation as they often perform multiple dependent graph
computations. Many of these graph computations, such as triangle
counting, are expensive but their results can be estimated quickly
using approximation algorithms [17]. These estimates can be used
as predictions. A social network application can perform many of
its dependent graph computations in parallel if the predictions are
correct or within some error bound.

8 CONCLUSION
In this paper, we introduce SpecRPC, a general RPC framework
for performing speculative execution. By managing dependencies
between callbacks and RPCs, SpecRPC simplifies the process of
using speculation and reduces application latency. We evaluate
SpecRPC by implementing a distributed transaction protocol using
the framework. Our experimental results show that SpecRPC can
significantly reduce transaction completion time by using specula-
tion to perform dependent reads in parallel.

We designed SpecRPC with the hope that it would be used by
many applications. As a result, some of the core designs of the
framework were chosen to simplify adoption for developers and
allow deployment in various environments. For example, instead
of requiring operating system support for state rollback after an
incorrect speculation, we perform state rollback completely within
the framework. These design choices necessitate an advisory pro-
grammingmodel where correctness relies on applications following
our suggested design pattern. Although we believe this is accept-
able for most applications, we are exploring other designs, such
as introducing language-level changes, that can provide stronger
guarantees. We plan to work closely with developers interested in
our recently open-sourced implementation, and use their feedback
to improve future versions of our framework.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Patrick Eugster, and the
anonymous reviewers for their valuable feedback. This work is sup-
ported by the Natural Sciences and Engineering Research Council
of Canada (NSERC). We also wish to thank the Canada Founda-
tion for Innovation and the Ontario Research Fund for funding the
purchase of equipment used for this research.

REFERENCES
[1] Aristeidis Antonakis, Theoklis Nikolaidis, and Pericles Pilidis. 2017. Multi-

objective climb path optimization for aircraft/engine integration using Particle
Swarm Optimization. Applied Sciences 7, 5 (2017).

[2] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A.
Maltz, and Ming Zhang. 2007. Towards Highly Reliable Enterprise Network Ser-
vices via Inference of Multi-level Dependencies. In Proceedings of the SIGCOMM
Conference (SIGCOMM’07).

[3] Kalyan Shankar Bhattacharjee, Hemant Kumar Singh, and Tapabrata Ray. 2016.
Multi-Objective Optimization With Multiple Spatially Distributed Surrogates.
ASME Journal of Mechanical Design 138, 9 (2016).

[4] Anasua Bhowmik and Manoj Franklin. 2002. A General Compiler Framework
for Speculative Multithreading. In Proceedings of the Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA’02).

[5] Phillip Bogle and Barbara Liskov. 1994. Reducing Cross Domain Call Overhead
Using Batched Futures. In Proceedings of the Annual Conference on Object-oriented
Programming Systems, Language, and Applications (OOPSLA’94).

[6] Fay Chang and Garth A. Gibson. 1999. Automatic I/O Hint Generation Through
Speculative Execution. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI’99).

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC’10).

[8] CPLEX. 2017. https://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/.

[9] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI’08).

[10] Francis Dang, Hao Yu, and Lawrence Rauchwerger. 2001. The R-LRPD test:
speculative parallelization of partially parallel loops. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium.

[11] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud Using
Live Data Migration. Proceedings of the VLDB Endowment 4, 8 (2011).

[12] Nathan Farrington and Alexey Andreyev. 2013. Facebook’s Data Center Network
Architecture. In Proceedings of the IEEE Optical Interconnects Conference.

[13] Keir Fraser and Fay Chang. 2003. Operating System I/O Speculation: How Two
Invocations Are Faster Than One. In Proceedings of the USENIX Annual Technical
Conference (ATC’03).

[14] Google. 2017. gRPC-go. https://github.com/grpc/grpc-go.
[15] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2016. In-

cremental Consistency Guarantees for Replicated Objects. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI’16).

[16] Gurobi Optimization. 2017. http://www.gurobi.com/.
[17] Mohammad Al Hasan and Vachik S. Dave. 2018. Triangle counting in large

networks: a review. WIREs Data Mining and Knowledge Discovery 8 (2018).
[18] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.

ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the USENIX Annual Technical Conference (ATC’10).

[19] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.
2012. Speculative Separation for Privatization and Reductions. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’12).

[20] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. 2009. Fast Track:
A Software System for Speculative Program Optimization. In Proceedings of the
Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’09).

[21] Thorsten Koch, Ted Ralphs, and Yuji Shinano. 2012. Could we use a million cores
to solve an integer program? Mathematical Methods of Operations Research 76, 1
(2012).

[22] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of
the ACM SIGOPS Symposium on Operating Systems Principles (SOSP’07).

[23] John R. Lange, Peter A. Dinda, and Samuel Rossoff. 2008. Experiences with
Client-based Speculative Remote Display. In Proceedings of the USENIX Annual
Technical Conference (ATC’08).

[24] Costin Leau. 2013. Spring Data Redis - Retwis-J. https://docs.spring.io/spring-
data/data-keyvalue/examples/retwisj/current/.

[25] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish Narayanasamy,
Peter M. Chen, and Jason Flinn. 2010. Respec: Efficient Online Multiprocessor Re-
playvia Speculation and External Determinism. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’10).

[26] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. 2013. Low-latency Multi-datacenter Databases Using Replicated
Commit. Proceedings of the VLDB Endowment 6, 9 (2013).

[27] James Mickens, Jeremy Elson, Jon Howell, and Jay Lorch. 2010. Crom: Faster Web
Browsing Using Speculative Execution. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI’10).

[28] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
Concurrency Control and Consensus for Commits under Conflicts. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16).

[29] A. Natarajan, Peng Ning, Yao Liu, S. Jajodia, and S. E. Hutchinson. 2012. NSD-
Miner: Automated discovery of Network Service Dependencies. In Proceedings of
the IEEE INFOCOM Conference (INFOCOM’12).

[30] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. 2005. Speculative Execu-
tion in a Distributed File System. In Proceedings of the ACM SIGOPS Symposium
on Operating Systems Principles (SOSP’05).

[31] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.
2006. Rethink the Sync. In Proceedings of the USENIX Symposium on Operating

http://www.gurobi.com/

SpecRPC: A General Framework for
Performing Speculative Remote Procedure Calls Middleware ’18, December 10–14, 2018, Rennes, France

Systems Design and Implementation (OSDI’06).
[32] Manohar K. Prabhu and Kunle Olukotun. 2005. Exposing Speculative Thread

Parallelism in SPEC2000. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’05).

[33] Lawrence Rauchwerger and David A. Padua. 1999. The LRPD test: speculative
run-time parallelization of loops with privatization and reduction parallelization.
IEEE Transactions on Parallel and Distributed Systems 10, 2 (1999).

[34] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K. Ousterhout. 2011. It’s Time for Low Latency. In Proceedings of the
USENIX Conference on Hot Topics in Operating Systems (HotOS’11).

[35] Bryan Van Scoy Scoy, Randy A. Freeman, and Kevin M. Lynch. 2018. The Fastest
KnownGlobally Convergent First-OrderMethod forMinimizing Strongly Convex
Functions. IEEE Control Systems Letters 2, 1 (2018).

[36] Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. 2009.
RPC Chains: Efficient Client-server Communication in Geodistributed Systems.
In Proceedings of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’09).

[37] SpecRPC. 2018. https://github.com/xnyan/specrpc.
[38] Martin Susskraut, Thomas Knauth, StefanWeigert, Ute Schiffel, Martin Meinhold,

and Christof Fetzer. 2010. Prospect: A Compiler Framework for Speculative
Parallelization. In Proceedings of the Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO’10).

[39] Eli Tilevich, William R. Cook, and Yang Jiao. 2009. Explicit Batching for Dis-
tributed Objects. In Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS’09).

[40] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2011. Detecting and Surviving Data Races Using Complementary Schedules.
In Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’11).

[41] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-
ter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011. DoublePlay: Paralleliz-
ing Sequential Logging and Replay. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS’11).

[42] Michael Wei, Matias Bjørling, Philippe Bonnet, and Steven Swanson. 2014. I/O
Speculation for the Microsecond Era. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC’14).

[43] BenjaminWester, PeterM. Chen, and Jason Flinn. 2011. Operating System Support
for Application-specific Speculation. In Proceedings of the European Conference
on Computer Systems (EuroSys’11).

[44] Benjamin Wester, James Cowling, Edmund B. Nightingale, Peter M. Chen, Jason
Flinn, and Barbara Liskov. 2009. Tolerating Latency in Replicated State Ma-
chines Through Client Speculation. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI’09).

[45] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. 2009.
CrystalBall: Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI’09).

[46] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent
Replication. In Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’15).

	Abstract
	1 Introduction
	2 Design Patterns
	2.1 Single-Level Speculation
	2.2 Multi-Level Speculation

	3 Architecture
	3.1 Speculative State
	3.2 Managing Dependencies
	3.3 Handling Incorrect Predictions
	3.4 Propagation of Speculative State
	3.5 Implementation

	4 Applications
	4.1 Replicated Commit
	4.2 Multi-Objective Optimizer

	5 Evaluation
	5.1 Microbenchmark
	5.2 Replicated Commit

	6 Related Work
	6.1 OS-Level Speculation
	6.2 Application-Level Speculation
	6.3 RPC Batching

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

