
Fault Tolerant Service Function Chaining
Milad Ghaznavi

University of Waterloo
eghaznav@uwaterloo.ca

Elaheh Jalalpour
University of Waterloo
ejalalpo@uwaterloo.ca

Bernard Wong
University of Waterloo
bernard@uwaterloo.ca

Raouf Boutaba
University of Waterloo
rboutaba@uwaterloo.ca

Ali José Mashtizadeh
University of Waterloo
mashti@uwaterloo.ca

ABSTRACT
Network traffic typically traverses a sequence of middleboxes form-
ing a service function chain, or simply a chain. Tolerating failures
when they occur along chains is imperative to the availability and
reliability of enterprise applications. Making a chain fault-tolerant
is challenging since, in the event of failures, the state of faulty mid-
dleboxes must be correctly and quickly recovered while providing
high throughput and low latency.

In this paper, we introduce FTC, a system design and protocol
for fault-tolerant service function chaining. FTC provides strong
consistency with up to f middlebox failures for chains of length
f + 1 or longer without requiring dedicated replica nodes. In FTC,
state updates caused by packet processing at a middlebox are col-
lected, piggybacked onto the packet, and sent along the chain to be
replicated. Our evaluation shows that compared with the state of
art [51], FTC improves throughput by 2–3.5× for a chain of two to
five middleboxes.

CCS CONCEPTS
•Computer systems organization→ Fault-tolerant network
topologies; •Networks→Middle boxes / network appliances;

KEYWORDS
Service Function Chain Fault Tolerance; Middlebox Reliability
ACM Reference Format:
Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and Ali
José Mashtizadeh. 2020. Fault Tolerant Service Function Chaining. In Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communi-
cation (SIGCOMM ’20), August 10–14, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3387514.3405863

1 INTRODUCTION
Middleboxes are widely deployed in enterprise networks, with each
providing a specific data plane function. These functions can be
composed to meet high-level service requirements by passing traffic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405863

through an ordered sequence of middleboxes, forming a service
function chain [45, 46]. For instance, data center traffic commonly
passes through an intrusion detection system, a firewall, and a
network address translator before reaching the Internet [59].

Providing fault tolerance for middleboxes is critical as their fail-
ures have led to large network outages, significant financial losses,
and left networks vulnerable to attacks [11, 44, 55, 56]. Existing
middlebox frameworks [29, 32, 35, 47, 51] have focused on provid-
ing fault tolerance for individual middleboxes. For a chain, they
consider individual middleboxes as fault tolerant units that together
form a fault tolerant chain. This design introduces redundancies
and overheads that can limit a chain’s performance.

Independently replicating the state of each middlebox in a chain
requires a large number replica servers, which can increase cost.
Part of that cost can be mitigated by having middleboxes share the
same replica servers, although oversharing can affect performance.
More importantly, replication causes packets to experience more
than twice its normal delay, since each middlebox synchronously
replicates state updates before releasing a packet to the next mid-
dlebox [29, 32, 35, 47].

Current state-of-the-art middlebox frameworks also stall as they
capture a consistent snapshot of their state leading to lower through-
put and higher latency [35, 47, 51]. These stalls significantly increase
latency with packets experiencing latencies from 400 µs to 9 ms per
middlebox compared to 10–100 µs without fault tolerance [35, 47].
When these frameworks are used in a chain, the stalls cause pro-
cessing delays across the entire chain, similar to a pipeline stall in a
processor. As a result, we observed a ∼40% drop in throughput for
a chain of five middleboxes as compared to a single middlebox (see
§ 7.4).

In this paper, we introduce a system called fault tolerant chaining
(FTC) that provides fault tolerance to an entire chain. FTC is inspired
by chain replication [58] to efficiently provide fault tolerance. At
each middlebox, FTC collects state updates due to packet processing
and piggybacks them onto the packet. As the packet passes through
the chain, FTC replicates piggybacked state updates in servers
hosting middleboxes. This allows each server hosting a middlebox
to act as a replica for its predecessor middleboxes. If a middlebox
fails, FTC can recover the lost state from its successor servers. For
middleboxes at the end of the chain, FTC transfers and replicates
their state updates in servers hosting middleboxes at the beginning
of the chain. FTC does not need any dedicated replica servers to
tolerate f number of middlebox failures for chains with more than
f + 1 middleboxes.

We extend chain replication [58] to address challenges unique
to a service function chain. Unlike the original protocol where all

https://doi.org/10.1145/3387514.3405863
https://doi.org/10.1145/3387514.3405863

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

nodes run an identical process, FTCmust support a chain comprised
of different middleboxes processing traffic in the service function
chain order. Accordingly, FTC allows all servers to process traffic
and replicate state. Moreover, FTC’s failure recovery instantiates a
new middlebox at the failure position to maintain the service func-
tion chain order, rather than the traditional protocol that appends
a new node at the end of a chain.

Furthermore, FTC improves the performance of fault tolerant
multicore middleboxes. We introduce packet transactions to provide
a simple programmingmodel to developmultithreadedmiddleboxes
that can effectively make use of multiple cores. Concurrent state
updates to middlebox state result in non-deterministic behavior that
is hard to restore. A transactional model for state updates allows
serializing concurrent state accesses that simplifies reasoning about
bothmiddlebox and FTC correctness. The state-of-the-art [51] relies
on complex static analysis that supports unmodified applications,
but can have worse performance when its analysis falls short.

FTC also tracks dependencies among transactions using data
dependency vectors that define a partial ordering of transactions.
The partial ordering allows a replica to concurrently apply state
updates from non-dependent transactions to improve replication
performance. This approach has two major benefits compared to
thread-based approaches that allow concurrent state replication by
replaying the operations of threads [51]. First, FTC can support ver-
tical scaling by replacing a running middlebox with a new instance
with more CPU cores or failing over to a server with fewer CPU
cores when resources are scarce during a major outage. Second, it
enables a middlebox and its replicas to run with a different number
of threads.

FTC is implemented on Click [34] and uses the ONOS SDN
controller [7]. We compare its performance with the state-of-the-
art [51]. Our results for a chain of two to five middleboxes show
that FTC improves the throughput of the state of art [51] by 2× to
3.5× with lower latency per middlebox.

2 BACKGROUND
A service function chain is an ordered sequence of middleboxes.
Following the network function virtualization (NFV) vision [1], an
increasing number of middleboxes are implemented as software
running on commodity hardware.

In an NFV environment, as shown in Figure 1, an orchestrator
deploys, manages, and steers traffic through a chain of middleboxes.
Each middlebox runs multiple threads and is equipped with a multi-
queue network interface card (NIC) [15, 42, 50]. A thread receives
packets from a NIC’s input queue and sends packets to a NIC’s
output queue. Figure 1 shows two threaded middleboxes processing
two traffic flows.

Stateful middleboxes keep dynamic state for packets that they
process [24, 52]. For instance, a stateful firewall filters packets based
on statistics that it collects for network flows [6], and a network
address translator maps internal and external addresses using a
flow table [25, 53].

Middlebox state can be partitionable or shared [6, 20, 23, 47].
Partitionable state variables describe the state of a single traffic flow
(e.g., MTU size and timeouts in stateful firewalls [6, 20]) and are only
accessed by a single middlebox thread. Shared state variables are

Orchestrator

!"!" Middlebox

!"!" !"!"
!"!"

Packet

SDN Network

Figure 1: Service function chain model in NFV

for a collection of flows, and multiple middlebox threads query and
update them (e.g., port-counts in an intrusion detection system).

A stateful middlebox is subject to both hardware and software
failures that can cause the loss of its state [44, 51]. The root causes
of these failures include bit corruptions, cable problems, software
bugs, and server failures due to maintenance operations and power
failures [22, 44]. We model these failures as fail-stop in which fail-
ures are detectable, and failed components are not restored.

2.1 Challenges
To recover from a middlebox failure, traffic must be rerouted to
a redundant middlebox where the state of the failed middlebox is
restored. State replication has two challenges that affect middlebox
performance.

First, most middleboxes are multithreaded [15, 26, 50, 51], and
the order in which interleaving threads access shared state is non-
deterministic. Parallel updates can lead to observable states that
are hard-to-restore. The difficulty in achieving high performance
multithreadedmiddleboxes is howwe capture this state for recovery.
One approach to accommodate non-determinism is to log any state
read andwrite, which allows restoring any observable state from the
logs [51]. However, this complicates the failure recovery procedure
because of record/replay, and leads to high performance overheads
during normal operation.

Second, to tolerate f failures, a packet is released only when at
least f +1 replicas acknowledge that state updates due to processing
of this packet are replicated. In addition to increasing latency, syn-
chronous replication reduces throughput since expensive coordina-
tions between packet processing and state replication are required
for consistency (e.g., pausing packet processing until replication is
acknowledged [29, 32, 35, 47]). The overhead of this synchrony for a
middlebox depends on where its replicas are located, and how state
updates are transferred to these locations. For a solution designed
for individual middleboxes, the overheads can accumulate for each
middlebox of a chain.

2.2 Limitations of Existing Approaches
Existing middlebox frameworks provide fault tolerance for individ-
ual middleboxes. These frameworks provide fault tolerance for a

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

chain with middleboxes deployed over multiple servers; however,
their high overheads impact the chain’s performance.

Existing frameworks use one of two approaches. The first ap-
proach takes snapshots of middlebox state for state replication [35,
47, 51]. While taking snapshot, middlebox operations are stalled
for consistency. These frameworks take snapshots at different rates.
They take snapshots per packet or packet-batch introducing 400 µs
to 8–9 ms of per packet latency overhead [35, 47]. Periodic snap-
shots (e.g., at every 20–200 ms intervals) can cause periodic latency
spikes up to 6 ms [51]. We measure that per middlebox snapshots
cause 40% throughput drop going from a single middlebox to a
chain of five middleboxes (see § 7.4).

The second approach [29, 32] redesigns middleboxes to separate
and push state into a fault tolerant backend data store. This sepa-
ration incurs high performance penalties. Accessing state takes at
least a round trip delay. Moreover, a middlebox can release a packet
only when it receives an acknowledgement from the data store
that relevant state updates are replicated. Due to such overheads,
the middlebox throughput can drop by ∼60% [29] and reduce to
0.5 Gbps (for packets with 1434 B median size) [32].

3 SYSTEM DESIGN OVERVIEW
The limitations of existing work lead us to design fault tolerant
chaining (FTC); a new approach that replicates state along the chain
to provide fault tolerance.

3.1 Requirements
We design FTC to provide fault tolerance for a wide variety of
middleboxes. FTC adheres to four requirements:

Correct recovery: FTC ensures that the middlebox behavior after
a failure recovery is consistent with the behavior prior to the fail-
ure [54]. To tolerate f failures, a packet can only be released outside
of a chain once all necessary information needed to reconstruct the
internal state of all middleboxes is replicated to f + 1 servers.

Low overhead and fast failure recovery: Fault tolerance for a chain
must come with low overhead. A chain processes a high traffic vol-
ume and middlebox state can be modified very frequently. At each
middlebox of a chain, latency should be within 10 to 100 µs [51],
and the fault tolerance mechanism must support accessing vari-
ables 100 k to 1 M times per second [51]. Recovery time must be
short enough to prevent application outages. For instance, highly
available services timeout in just a few seconds [3].

Resource efficiency: Finally, the fault tolerance solution should be
resource efficient. To isolate the effect of possible failures, replicas of
a middlebox must be deployed on separate physical servers. We are
interested in a system that dedicates the fewest servers to achieve
a fixed replication factor.

3.2 Design Choices
We model packet processing as a transaction. FTC carefully col-
lects updated values of state variables modified during a packet
transaction and appends them to the packet. As the packet passes
through the chain, FTC replicates piggybacked state updates in
servers hosting the middleboxes.

Transactional packet processing: To accommodate non-determinism
due to concurrency, we model the processing of a packet as a trans-
action, where concurrent accesses to shared state are serialized to
ensure that consistent state is captured and replicated. In other sys-
tems, the interleaved order of lock acquisitions and state variable
updates between threads is non-deterministic, yet externally ob-
servable. Capturing and replaying this order is complex and incurs
high performance overheads [51]. FTC uses transactional packet
processing to avoid the complexity and overhead.

This model is easily adaptable to hybrid transactional memory,
where we can take advantage of the hardware support for transac-
tions [13]. This allows FTC to use modern hardware transactional
memory for better performance, when the hardware is present.

We also observe that this model does not reduce concurrency
in popular middleboxes. First, these middleboxes already serialize
access to state variables for correctness. For instance, a load bal-
ancer and a NAT ensure connection persistence (i.e., a connection is
always directed to a unique destination) while accessing a shared
flow table [9, 53]. Concurrent threads in these middleboxes must
coordinate to provide this property.

Moreover, most middleboxes share only a few state variables [29,
32]. Kablan et al. surveyed five middleboxes for their access pat-
terns to state [29]. These middleboxes mostly perform only one
or two read/write operations per packet. The behavior of these
middleboxes allow packet transactions to run concurrently most of
the time.

In-chain replication: Consensus-based state replication [36, 40]
requires 2f + 1 replicas for each middlebox to reliably detect and
recover from f failures. A high-availability cluster approach re-
quires f + 1 replicas as it relies on a fault tolerant coordinator for
failure detection. For a chain of n middleboxes, these schemes need
n× (2f + 1) and n× (f + 1) replicas. Replicas are placed on separate
servers, and a naïve placement requires the same number of servers.

FTC observes that packets already flow through a chain; each
server hosting a middlebox of the chain can serve as a replica for
the other middleboxes. Instead of allocating dedicated replicas, FTC
replicates the state of middleboxes across the chain. In this way, FTC
tolerates f failures without the cost of dedicated replica servers.

State piggybacking: To replicate state modified by a packet, ex-
isting schemes send separate messages to replicas. In FTC, a packet
carries its own state updates. State piggybacking is possible, as a
small number of state variables [33] are modified with each packet.
Since state updated during processing a packet is replicated in
servers hosting the chain, relevant state is already transferred and
replicated when the packet leaves the chain.

No checkpointing and no replay: FTC replicates state values at
the granularity of packet transactions, rather than taking snapshots
of state or replaying packet processing operations. During normal
operation, FTC removes state updates that have been applied in
all replicas to bound memory usage of replication. Furthermore,
replicating the values of state variables allows for fast state recovery
during failover.

Centralized orchestration: In our system, a central orchestrator
manages the network and chains. The orchestrator deploys fault
tolerant chains, reliably monitors them, detects their failures, and

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

!!

!"!" !"!" !"#$!"#$

Head Tail

Piggyback log

Packet

Replica

!! Middlebox

!"!"

State store

………

Figure 2: Normal operation for a single middlebox. The head
and middlebox reside in the same server. The head tracks state up-
dates due to middlebox packet processing and appends a piggyback
log containing these updates to the packet. As the packet passes
through the chain, other replicas replicate the piggyback log and
apply the carried state updates to their state stores. Finally, the tail
strips the piggyback log and releases the packet.

initiates failure recovery. The orchestrator functionality is provided
by a fault tolerant SDN controller [7, 31, 41]. After deploying a
chain, the orchestrator is not involved in normal chain operations
to avoid becoming a performance bottleneck.

In the following sections, we first describe our protocol for a
single middlebox in § 4, then we extend this protocol for a chain of
middleboxes in § 5.

4 FTC FOR A SINGLE MIDDLEBOX
In this section, we present our protocol for a single middlebox.
We first describe our protocol with a single threaded middlebox
where state is replicated by single threaded replicas. We extend our
protocol to support multithreaded middleboxes and multithreaded
replication in § 4.2 and § 4.3. Our system allowsmiddlebox instances
to scale the number of threads in response to load, but scaling the
number of instances is outside scope of this work.

4.1 Middlebox State Replication
We adapt the chain replication protocol [58] for middlebox state
replication. For reliable state transmission between servers, FTC
uses sequence numbers, similar to TCP, to handle out-of-order de-
liveries and packet drops within the network.

Figure 2 shows our protocol for providing fault tolerance for a
middlebox. FTC replicates the middlebox state in f + 1 replicas
during normal middlebox operations. Replicas r1, . . . , rf +1 form
the replication group for middleboxm where r1 and rf +1 are called
the head and tail replicas. Each replica is placed on a separate server
whose failure is isolated. With state replicated in f + 1 replicas, the
state remains available even if f replicas fail.

The head is co-locatedwith themiddlebox in the same server. The
middlebox state is separated from the middlebox logic and is stored
in the head’s state store. The head provides a state management API
for the middlebox to read and write state during packet processing.
For an existing middlebox to use FTC, its source code must be
modified to call our API for state reads and writes.

Normal operation of protocol: As shown in Figure 2, the middle-
box processes a packet, and the head constructs and appends a
piggyback log to the packet. The piggyback log contains a sequence
number and a list of state updates during packet processing. As the
packet traverses the chain, each subsequent replica replicates the
piggyback log and applies the state updates to its state store. After
replication, the tail strips the piggyback log and releases the packet.

The head tracks middlebox updates to state using a monotoni-
cally increasing sequence number. After a middlebox finishes pro-
cessing a packet, the head increments its sequence number only if
state was modified during packet processing. The head appends the
state updates (i.e., state variables modified in processing the packet
and their updated values) and sequence number to the packet as a
piggyback log. If no state was updated, the head adds a no-op pig-
gyback log. The head then forwards the packet to the next replica.

Each replica continuously receives packets with piggyback logs.
If a packet is lost, a replica requests its predecessor to retransmit the
piggyback log with the lost sequence number. A replica keeps the
largest sequence number that it has received in order (i.e., the replica
has already received all piggyback logs with preceding sequence
numbers). Once all prior piggyback logs are received, the replica
applies the piggyback log to its local state store and forwards the
packet to the next replica.

The tail replicates state updates, strips the piggyback log from
the packet, and releases the packet to its destination. Subsequently,
the tail periodically disseminates its largest sequence number to
the head. The sequence number is propagated to all replicas so they
can prune their piggyback logs up to this sequence number.

Correctness: Each replica replicates the per-packet state updates
in order. As a result, when a replica forwards a packet, it has repli-
cated all preceding piggyback logs. Packets also pass through the
replication group in order. When a packet reaches a replica, prior
replicas have replicated the state updates carried by this packet.
Thus, when the tail releases a packet, the packet has already tra-
versed the entire replication group. The replication group has f + 1
replicas allowing FTC to tolerate f failures.

Failure recovery: FTC relies on a fault tolerant orchestrator to
reliably detect failures. Upon failure detection, the replication group
is repaired in three steps: adding a new replica, recovering the lost
state from an alive replica, and steering traffic through the new
replica.

In the event of a head failure, the orchestrator instantiates a
new middlebox instance and replica, as they reside on the same
server. The orchestrator also informs the new replica about other
alive replicas. If the new replica fails, the orchestrator restarts the
recovery procedure.

Selecting a replica as the source for state recovery depends on
how state updates propagate through the chain. We can reason
about this using the log propagation invariant: for each replica
except the tail, its successor replica has the same or prior state,
since piggyback logs propagate in order through the chain.

If the head fails, the new replica retrieves the state store, pig-
gyback logs, and sequence number from the immediate successor
to the head. If other replicas fail, the new replica fetches the state
from the immediate predecessor.

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

To ensure that the log propagation invariant holds during re-
covery, the replica that is the source for state recovery discards
any out-of-order packets that have not been applied to its state
store and will no longer admit packets in flight. If the contacted
replica fails during recovery, the orchestrator detects this failure
and re-initializes the new replica with the new set of alive replicas.

Finally, the orchestrator updates routing rules in the network
to steer traffic through the new replica. If multiple replicas have
failed, the orchestrator waits until all new replicas acknowledge that
they have successfully recovered the state. Then, the orchestrator
updates the necessary routing rules from the tail to the head.

4.2 Concurrent Packet Processing
To achieve higher performance, we augment our protocol to sup-
port multithreaded packet processing and state replication in the
middlebox and the head. Other replicas are still single threaded.
Later in § 4.3, we will support multithreaded replications in other
replicas.

In concurrent packet processing, multiple packets are processed
in interleaving threads. The threads can access the same state vari-
ables in parallel. To accommodate this parallelism, FTC must con-
sistently track parallel state updates. We introduce transactional
packet processing that effectively serializes packet processing. This
model supports concurrency if packet transactions access disjoint
subsets of state.

Transactional Packet Processing: In concurrent packet processing,
the effects on state variables must be serializable. Further, state
updates must be applied to replicas in the same order so that the
system can be restored to a consistent state during failover. To
support this requirement, replay based replication systems, such
as FTMB [51], track all state accesses, including state reads, which
can be challenging to perform efficiently.

In transactional packet processing, state reads and writes by a
packet transaction have no impact on another concurrently pro-
cessed packet. This isolation allows us to only keep track of the
relative order between transactions, without needing to track all
state variable dependencies.

We realize this model by implementing a software transactional
memory (STM) API for middleboxes. When a packet arrives, the
runtime starts a new packet transaction in which multiple reads
and writes can be performed. Our STM API uses fine grained strict
two phase locking (similar to [14]) to provide serializability. Our
API uses a wound-wait scheme that aborts transaction to prevent
possible deadlocks if a lock ordering is not known in advance. An
aborted transaction is immediately re-executed. The transaction
completes when the middlebox releases the packet.

Using two phase locking, the head runtime acquires necessary
locks during a packet transaction. We simplify lock management
using state space partitioning, by using the hash of state variable
keys to map keys to partitions, each with its own lock. The state par-
titioning is consistent across all replicas, and to reduce contention,
the number of partitions is selected to exceed the maximum number
of CPU cores.

At the end of a transaction, the head atomically increments its
sequence number only if state was updated during this packet
transaction. Then, the head constructs a piggyback log containing

the state updates and the sequence number. After the transaction
completes, the head appends the piggyback log to the packet and
forwards the packet to the next replica.

Correctness: Due to mutual exclusion, when a packet transaction
includes an updated state variable in a piggyback log, no other
concurrent transaction has modified this variable, thus the included
value is consistent with the final value of the packet transaction. The
head’s sequence number maps this transaction to a valid serial order.
Replicated values are consistent with the head, because replicas
apply state updates of the transaction in the sequence number order.

4.3 Concurrent State Replication
Up to now FTC provides concurrent packet processing but does not
support concurrent replication. The head uses a single sequence
number to determine a total order of transactions that modify state
partitions. This total ordering eliminates multithreaded replication
at successor replicas.

To address the possible replication bottleneck, we introduce data
dependency vectors to support concurrent state replication. Data
dependency tracking is inspired by the vector clocks algorithm [19],
but rather than tracking points in time when events happen for
processes or threads, FTC tracks the points in time when packet
transactions modify state partitions.

This approach provides more flexibility compared to tracking
dependencies between threads and replaying their operations to
replicate the state [51]. First, it easily supports vertical scaling as
a running middlebox can be replaced with a new instance with
different number of CPU cores. Second, a middlebox and its replicas
can also run with different number of threads. The state-of-the-
art [51] requires the same number of threads with a one-to-one
mapping between a middlebox and its replicas.

Data dependency vectors: We use data dependency vectors to
determine a partial order of transactions in the head. Each element
of this vector is a sequence number associated to a state partition.
A packet piggybacks this partial order to replicas enabling them to
replicate transactions with more concurrency; a replica can apply
and replicate a transaction in a different serial order that is still
equivalent to the head.

The head keeps a data dependency vector and serializes parallel
accesses to this vector using the same state partition locks from our
transactional packet processing. The headmaintains its dependency
vector using the following rules. A read-only transaction does not
change the vector. For other transactions, the head increments the
sequence number of a state partition that received any read or
write.

In a piggyback log, we replace the sequence number with a
dependency vector that represents the effects of a transaction on
state partitions. If the transaction does not access a state partition,
the head uses a “don’t-care” value for this partition in the piggyback
log. The head obtains the sequence number of other partitions from
the head’s dependency vector before incrementing their sequence
numbers.

Each successor replica keeps a dependency vector MAX that
tracks the latest piggyback log that it has replicated in order, i.e.,
it has already received all piggyback logs prior to MAX . In case

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

W(1)

0,x,x

1,x,4

2,3,50,3,4 1,3,4

T
h

e
 h

e
a
d

A
 re

p
lic

a

1

2

3

4

The head’s

dependency vector:

1 2

2,3,50,3,4 1,3,4

The replica’s

dependency vector:

4 5

5

held

0,3,4 ≥ 0,x,x

0,3,4 ≥ 1,x,4 1,3,4 ≥ 1,x,4

R(i) denotes reading

state partition i.

W(i) denotes writing

state partition i.

R(1),W(3)

x in a vector shows

“don’t care”

Figure 3: Data dependency vectors. The head and the replica
run two threads and maintain a dependency vector for three state
partitions.

a packet is lost, a replica requests its predecessor to retransmit
missing piggyback logs.

Upon receiving a packet, a replica compares the piggybacked
dependency vector with itsMAX . The replica ignores state parti-
tions with “don’t care” from this comparison. Once all prior piggy-
back logs have been received and applied, the replica applies and
replicates the piggyback log. For other state partitions, the replica
increments their associated sequence numbers inMAX .

Example: Figure 3 shows an example of using data dependency
vectors in the head and a successor replica with two threads. The
head and the replica begin with the same dependency vector for
three state partitions. First, the head performs a packet transaction
that writes to state partition 1 and increments the associated se-
quence number. The piggyback log belonging to this transaction
contains “don’t care” value for state partitions 2 and 3 (denoted
by x), since the transaction did not read or write these partitions.
Second, the head performs another transaction and forwards the
packet with a piggyback log.

Third, as shown the second packet arrives to the replica before
the first packet. Since the piggybacked dependency vector is out of
order, the replica holds the packet. Fourth, the first packet arrives.
Since the piggybacked vector is in order, the replica applies the
piggyback log and updates its local dependency vector accordingly.
Fifth, by applying the piggyback log of the first packet, the replica
now can apply the piggyback log of the held packet.

5 FTC FOR A CHAIN
Our protocol for a chain enables each middlebox to replicate the
chain’s state while processing packets. To accomplish this, we ex-
tend the original chain replication protocol [58] during both normal
operation and failure recovery. FTC supports middleboxes with dif-
ferent functionalities to run across the chain, while the same process
must be running across the nodes in the original chain replication
protocol. FTC’s failure recovery instantiates a newmiddlebox at the
failure position to maintain the chain order, while the traditional
protocol appends a new node at the end of a chain.

Figure 4 shows our protocol for a chain of n middleboxes. Our
protocol can be thought of as running n instances (per middlebox)
of the protocol developed earlier in § 4. FTC places a replica per
each middlebox. Replicas form n replication groups, each of which
provides fault tolerance for a single middlebox.

Viewing a chain as a logical ring, the replication group of a mid-
dlebox consists of a replica and its f succeeding replicas. Instead
of being dedicated to a single middlebox, a replica is shared among
f + 1 middleboxes and maintains a state store for each of them.
Among these middleboxes, a replica is the head of one replication
group and the tail of another replication group. A middlebox and
its head are co-located in the same server. For instance in Figure 4,
if f = 1 then the replica r1 is in the replication groups of middle-
boxesm1 andmn , and r2 is in the replication groups ofm1 andm2.
Subsequently, the replicas rn and r1 are the head and the tail of
middleboxmn .

FTC adds two additional elements, the forwarder and buffer at
the ingress and egress of a chain. The forwarder and buffer are also
multithreaded, and are collocated with the first and last middle-
boxes. The buffer holds a packet until the state updates associated
with all middleboxes of the chain have been replicated. The buffer
also forwards state updates to the forwarder for middleboxes with
replicas at the beginning of the chain. The forwarder adds state
updates from the buffer to incoming packets before forwarding the
packets to the first middlebox.

5.1 Normal Operation of Protocol
Figure 4 shows the normal operation of our protocol. The forwarder
receives incoming packets from the outside world and piggyback
messages from the buffer. A piggyback message contains middlebox
state updates. As the packet passes through the chain, a replica
detaches and replicates the relevant parts of the piggyback message
and applies associated state updates to its state stores. A replica
ri tracks the state updates of a middleboxmi and updates the pig-
gyback message to include these state updates. Replicas at the
beginning of the chain replicate for middleboxes at the end of the
chain. The buffer withholds the packet from release until the state
updates of middleboxes at the end of the chain are replicated. The
buffer transfers the piggyback message to the forwarder that adds
it to incoming packets for state replication.

The forwarder receives incoming packets from outside world
and piggyback messages from the buffer. A piggyback message
consists of a list of piggyback logs and a list of commit vectors. The
tail of each replication group appends a commit vector to announce
the latest state updates that have been replicated f + 1 times for
the corresponding middlebox.

Each replica constantly receives packets with piggyback mes-
sages. A replica detaches and processes a piggyback message before
the packet transaction. As mentioned before, each replica is in the
replication group of f preceding middleboxes. For each of them,
the replica maintains a dependency vectorMAX to track the latest
piggyback log that it has replicated in order. The replica processes
a relevant piggyback log from the piggyback message as described
in § 4.3. Once all prior piggyback logs are applied, the replica repli-
cates the piggyback log, applies state updates to the associated state
store, and updates the associated dependency vectorMAX .

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Packet with Piggyback Message Replica

Piggyback Message

Packet

!"!"

!"!" Middlebox State store

Buffer!"!" !"!"Forw.

!"!"
!"!" !!!!

1

2

3

4

Figure 4: Normal operation for a chain. A middlebox and its head replica reside in the same server. The forwarder and buffer are located
in the first and last servers. 1○ The forwarder appends a state message containing the state updates of the last f middleboxes in the chain
from the buffer to an incoming packet, and forwards this packet to the first replica. 2○ Each replica applies the piggybacked state updates,
allows the middlebox to process the packet, and appends new state updates to the packet. 3○ Replicas at the beginning of the chain replicate
for middleboxes at the end of the chain. The buffer holds packets and releases them once state updates from the end of the chain are replicated.
4○ The buffer transfers the piggyback message to the forwarder that adds it to incoming packets for state replication.

Once the middlebox finishes the packet transaction, the replica
updates and reattaches the piggyback message to the packet, then
forwards the packet. For the replication group where the replica
is the head, it adds a piggyback log containing the state updates
of processing the packet. If the replica is a tail in the replication
group of a middleboxm, it removes the piggyback log belonging
to middleboxm to reduce the size of the piggyback message. The
reason is that a tail replicates the state updates ofm for f +1-th time.
Moreover, it attaches its dependency vectorMAX of middleboxm
as a commit vector. Later by reading this commit vector, the buffer
can safely release held packets. Successor replicas also use this
commit vector to prune obsolete piggyback logs.

To correctly release a packet, the buffer requires that the state
updates of this packet are replicated, specifically for each middlebox
with a preceding tail in the chain. The buffer withholds a packet
from release until an upcoming packet piggybacks commit vectors
that confirm meeting this requirement. Upon receiving an upcom-
ing packet, the buffer processes the piggybacked commit vectors to
release packets held in the memory.

Specifically, let m be a middlebox with a preceding tail, and
V2 be the end of updated range from a piggyback log of a held
packet belonging tom. Once the commit vector of eachm from an
upcoming packet shows that all state updates prior to and including

V2 have been replicated, the buffer releases the held packet and
frees its memory.

Other considerations: There may be time periods that a chain
receives no incoming packets. In such cases, the state is not propa-
gated through the chain, and the buffer does not release packets. To
resolve this problem, the forwarder keeps a timer to receive incom-
ing packets. Upon the timeout, the forwarder sends a propagating
packet carrying a piggyback message it has received from the buffer.
Replicas do not forward a propagating packet to middleboxes. They
process and update the piggyback message as described before
and forward the packet along the chain. The buffer processes the
piggyback message to release held packets.

Some middlebox in a chain can filter packets (e.g., a firewall may
block certain traffic), and consequently the piggybacked state is not
passed on. For such a middlebox, its head generates a propagating
packet to carry the piggyback message of a filtered packet.

Finally, if the chain length is less than f + 1, we extend the chain
by adding more replicas prior to the buffer. These replicas only
process and update piggyback messages.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

5.2 Failure Recovery
Handling the failure of the forwarder or the buffer is straightfor-
ward. They contain only soft state, and spawning a new forwarder
or a new buffer restores the chain.

The failure of a middlebox and its head replica is not isolated,
since they reside on the same server. If a replica fails, FTC repairs f +
1 replication groups as each replica replicates for f +1middleboxes.
The recovery involves three steps: spawning a new replica and a
new middlebox, recovering the lost state from other alive replicas,
and steering traffic through the new replica.

After spawning a new replica, the orchestrator informs it about
the list of replication groups in which the failed replica was a
member. For each of these replication group, the new replica runs
an independent state recovery procedure as follows. If the failed
replica was the head of a replication group, the new replica retrieves
the state store and the dependency vectorMAX from the immediate
successor in this replication group. The new replica restores the
dependencymatrix of the failed head by setting each of its row to the
retrievedMAX . For other replication groups, the new replica fetches
the state from the immediate predecessors in these replication
groups.

Once the state is recovered, the new replica notifies the orchestra-
tor to update routing rules to steer traffic through the new replica.
For simultaneous failures, the orchestrator waits until all new repli-
cas confirm that they have finished their state recovery procedures
before updating routing rules.

6 IMPLEMENTATION
FTC builds on the ONOS SDN controller [7] and Click [34]. We
use the ONOS controller as our NFV orchestrator to deploy middle-
boxes built on Click. Click is a popular toolkit to develop virtual
middleboxes using modular elements. The forwarder and buffer are
implemented as Click elements. Our implementation consists of 1K
lines of Java for the orchestrator and 6K lines of C++ for FTC and
middleboxes.

A replica consists of control and data plane modules. The control
module is a daemon that communicates with the orchestrator and
the control modules in other replicas. In failover, the control module
spawn a thread to fetch state per each replication group. Using a
reliable TCP connection, the thread sends a fetch request to the
appropriate member in the replication group and waits to receive
state.

The data plane module processes piggyback messages, sends and
receives packets to and from a middlebox, constructs piggyback
messages, and forwards packets to a next element in the chain
(the data-plane module of the next replica or the buffer). In our
experiments, the data plane also routes packets through a chain by
rewriting their headers.

FTC appends the piggyback logs to the end of a packet, and
inserts an IP option to notify our runtime that a packet has a piggy-
back message. As a piggyback message is appended at the end of a
packet, its process and construction can be performed in-place, and
there is no need to actually strip and reattach it. Before sending a
packet to the middlebox, the relevant header fields (e.g., the total
length in IP header) is updated to not account for the piggyback
message. Before forwarding the packet to next replica, the header

Middlebox State reads State writes Chain Middleboxes in chain

MazuNAT Per packet Per flow Ch-n Monitor1 → · · · → Monitorn
SimpleNAT Per packet Per flow Ch-Gen Gen1 → Gen2
Monitor Per packet Per packet Ch-Rec Firewall→ Monitor→ SimpleNAT

Gen No Per packet
Firewall N/A N/A

Table 1: Experimental middleboxes and chains

is updated back to reconsider the piggyback message. For middle-
boxes that may extend the packet, the data plane module operates
on the copy of a piggyback message.

7 EVALUATION
We describe our setup and methodology in § 7.1. We micro bench-
mark the overhead of FTC in § 7.2. We measure the performance
of FTC for middleboxes in § 7.3 and for chains in § 7.4. Finally, we
evaluate the failure recovery of FTC in § 7.5.

7.1 Experimental Setup and Methodology
We compare FTC with NF, a non fault-tolerant baseline system, and
FTMB, our implementation of [51]. Our FTMB implementation is a
performance upper bound of the original work that performs the
logging operations described in [51] but does not take snapshots.
Following the original prototype, FTMB dedicates a server in which
a middlebox master (M) runs, and another server where the fault
tolerant components input logger (IL) and output logger (OL) ex-
ecute. Packets go through IL, M, then OL. M tracks accesses to
shared state using packet access logs (PALs) and transmits them
to OL. In the original prototype, no data packet is released until
all corresponding dropped PALs are retransmitted. Our prototype
assumes that PALs are delivered on the first attempt, and packets
are released immediately afterwards. Further, OL maintains only
the last PAL.

We used two environments. The first is a local cluster of 12
servers. Each server has an 8-core Intel Xeon CPU D-1540 clocked
at 2.0 Ghz, 64 GiB of memory, and two NICs, a 40 Gbps Mellanox
ConnectX-3 and a 10 Gbps Intel Ethernet Connection X557. The
servers run Ubuntu 14.04 with kernel 4.4 and are connected to
10 and 40 Gbps top-of-rack switches. We use MoonGen [17] and
pktgen [57] to generate traffic and measure latency and throughput,
respectively. Traffic from the generator server, passed in the 40 Gbps
links, is sent through middleboxes and back to the generator. FTC
uses a 10 Gbps link to disseminate state changes from buffer to
forwarder.

The second environment is the SAVI distributed Cloud [30] com-
prised of several datacenters deployed across Canada.We use virtual
machines with 4 virtual processor cores and 8 GiB memory running
Ubuntu 14.04 with Kernel 4.4. We use the published ONOS docker
container [39] to control a virtual network of OVS switches [38]
connecting these virtual machines. We follow the multiple inter-
leaved trials methodology [4] to reduce the variability that come
from performing experiments on a shared infrastructure.

We use the middleboxes and chains shown in Table 1. The mid-
dleboxes are implemented in Click [34]. MazuNAT is an implemen-
tation of the core parts of a commercial NAT [2], and SimpleNAT

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

128 256 512
Packet size (Bytes)

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t

(M
pp

s)

State size 16
State size 64
State size 128
State size 256

Figure 5: Throughput vs. state size

1 2 4 8
Sharing level

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
pp

s)

NF FTC FTMB

Figure 6: Throughput of Monitor

1 2 4 8
Threads

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
pp

s)

NF FTC FTMB

Figure 7: Throughput of MazuNAT

provides basic NAT functionalities. They represent read-heavy mid-
dleboxes with a moderate write load on the shared state. Monitor
is a read/write heavy middlebox that counts the number of packets
in a flow or across flows. It takes a sharing level parameter that
specifies the number of threads sharing the same state variable.
For example, no state is shared for the sharing level 1, and all 8
threads share the same state variable for sharing level 8. Gen rep-
resents a write-heavy middlebox that takes a state size parameter,
which allows us to test the impact of a middlebox’s state size on
performance. Firewall is stateless. Our experiments also test three
chains comprised of these middleboxes, namely Ch-n, Ch-Gen, and
Ch-Rec.

For experiments in the first environment, we report latency
and throughput. For a latency data point, we report the average of
hundreds of samples taken in a 10 second interval. For a throughput
data point, we report the average of maximum throughput values
measured every second in a 10 second interval. Unless shown, we
do not report confidence intervals as they are negligible. Unless
specified otherwise, the packet size in our experiments is 256 B,
and f = 1.

7.2 Microbenchmark
Performance breakdown: To benchmark FTC, we breakdown the

performance of the MazuNAT middlebox configured with eight
threads in a chain of length two. We show the results for a single
thread, but we observed similar results across all threads (assuming
low contention). The results only show the computational overhead
and exclude device and network IO. In § 7.3, we discuss FTC’s impact
on end-to-end latency.

Table 2 shows the per packet processing cost in CPU cycles.
Packet transaction execution, which includes both packet process-
ing and locking, is the primary contributor to packet latency. The
latency due to copying piggybacked state is negligible, because the
state is updated per network flow, and the size of updated state is
small. The latencies of the forwarder and buffer are also small, and
they are independent of the chain length. Only the first and last
middlebox contain the forwarder and buffer respectively.

State size performance impact: We also use a micro-benchmark to
determine the impact of a state size on the performance of FTC. We
measured the latency overhead for the middlebox Gen and the chain
Ch-Gen. We observed that under 2 Mpps for 512 B packets, varying
the size of the generated state from 32–256 B has a negligible impact

CPU cycles
Packet processing 355 ± 12
Locking 152 ± 11
Copying piggybacked state 58 ± 6
Forwarder 8 ± 2
Buffer 100 ± 4

Table 2: Performance breakdown for MazuNAT running in a
chain of length two. This table shows a breakdown of the CPU
overhead for an FTC enabled middlebox.

on latency for both Gen and Ch-Gen (the difference is less than 2 µs).
Thus, we focus on the throughput overhead.

Figure 5 shows the impact of state size generated by Gen on
throughput. Gen runs a single thread. We vary the state size and
measure Gen’s throughput for different packet sizes. As expected,
the size of piggyback messages impacts the throughput only if it is
proportionally large compared to packet sizes. For 128 B packets,
throughput drops by only 9% when Gen generates states that are
128 B in size or less. The throughput drops by less than 1% with
512 B packets and state up to 256 B in size.

We expect popular middleboxes to generate state much smaller
than some of our tested values. For instance, a load balancer and
a NAT generate a record per traffic flow [9, 28, 53] that is roughly
32 B in size (2× 12 B for the IPv4 headers in both directions and 8 B
for the flow identifier). FTC can use jumbo frames to encompass
larger state sizes exceeding standard maximum transmission units.

7.3 Fault-Tolerant Middleboxes
Throughput: Figures 6 and 7 show the maximum throughput of

two middleboxes. In Figure 6, we configure Monitor to run with
eight threads and measure its throughput with different sharing
levels. As the sharing level for Monitor increases, the throughput
of all systems, including NF, drops due to the higher contention in
reading and writing the shared state. For sharing levels of 8 and
2, FTC achieves a throughput that is 1.2× and 1.4× that of FTMB’s
and incurs an overhead of 9% and 26% compared to NF. These
overheads are expected since Monitor is a write-heavy middlebox,
and the shared state is modified non-deterministically per packet.
For sharing level 1, NF and FTC reach the NIC’s packet processing

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

0.5 1.0 1.5 2.0 2.5 3.0

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

NF FTC FTMB

(a) Monitor - Sharing level 8

0.5 1.0 1.5 2.0 2.5 3.0

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

NF FTC FTMB

(b) MazuNAT - 1 thread

1 2 3 4 5 6 7 8 9

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

N
IC

’s
lim

it

NF FTC FTMB

(c) MazuNAT - 8 threads

Figure 8: Latency of middleboxes

capacity1. FTMB does not scale for sharing level 1, since for every
data packet, a PAL is transmitted in a separate message, which
limits FTMB’s throughput to 5.26 Mpps.

Figure 7 shows our evaluation for MazuNAT’s throughput while
varying the number of threads. FTC’s throughput is 1.37–1.94× that
of FTMB’s for 1 to 4 threads. Once a traffic flow is recorded in the
NAT flow table, processing next packets of this flow only requires
reading the shared record (until the connection terminates or times
out). The higher throughput compared for MazuNAT is because FTC
does not replicate the reads, while FTMB logs them to provide fault
tolerance [51]. We observe that FTC incurs 1–10% throughput over-
head compared to NF. Part of this overhead is because FTC has to
pay the cost of adding space to packets for possible state writes,
even when state writes are not performed.

The pattern of state reads and writes impacts FTC’s throughput.
Under moderate write workloads, FTC incurs 1–10% throughput
overhead, while under write-heavy workloads, FTC’s overhead
remains less than 26%.

Latency: Figure 8 shows the latency of Monitor (8 threads with
sharing level 8) and MazuNAT (two configurations, 1 thread and 8
threads) under different traffic loads. For the both middleboxes,
the latency remains under 0.7 ms for all systems as the traffic load
increases, until the systems reach their respective saturation points.
Past these points, packets start to be queued, and per-packet latency
rapidly spikes.

As shown in Figure 8a, under sustainable loads, FTC and FTMB
respectively introduce overhead within 14–25 µs and 22–31 µs to
the per packet latency, out of which 6–7 µs is due to the extra
one way network latency to forward the packet and state to the
replica. For this write heavy middlebox, FTC adds a smaller latency
overhead compared to FTMB.

Figure 8b shows that, when running MazuNAT with one thread,
FTC can sustain nearly the same traffic load as NF, and FTC and
FTMB have similar latencies. For eight threads shown in Figure 8c,
both FTC and NF reach the packet processing capacity of the NIC.
The latency of FTC is largely independent of the number of threads,

1Although the 40 GbE link is not saturated, our investigation showed that the bottle-
neck is the NIC’s packet processing power. Wemeasured that the Mellanox ConnectX-3
MT 27500, at the receiving side and working under the DPDK driver, at most can
process 9.6–10.6 Mpps for varied packet sizes. Though we have not found any official
document by Mellanox describing this limitation, similar behavior (at higher rates) has
been reported for Intel NICs (see Sections 5.4 and 7.5 in [17] and Section 4.6 in [26]).

while FTMB experiences a latency increase of 24–43 µs when going
from one to eight threads.

7.4 Fault Tolerant Chains
In this section, we report the performance of FTC for a chain of
middleboxes during normal operation. For a NF chain, each middle-
box is deployed in a separate physical server. We do not need more
servers, while we dedicate twice the number of servers to FTMB:
A server for each middlebox (Master in FTMB) and a server for its
replica (IL and OL in FTMB).

Chain length impact on throughput: Figure 9 shows the maxi-
mum traffic throughput passing in four chains (Ch-2 to Ch-5 listed
in Table 1). Monitors in these chains run eight threads with sharing
level 1. We also report for FTMB+Snapshot that is FTMB with snap-
shot simulation. To simulate the overhead of periodic snapshots,
we add an artificial delay (6 ms) periodically (every 50 ms). We get
these values from [51].

As shown in Figure 9, FTC’s throughput is within 8.28–8.92Mpps
and 4.83–4.80 Mpps for FTMB. FTC imposes a 6–13% throughput
overhead compared to NF. The throughput drop from increasing the
chain length for FTC is within 2–7%, while that of FTMB+Snapshot
is 13–39% (its throughput drops from 3.94 to 2.42 Mpps).

This shows that throughput of FTC is largely independent of
the chain length, while, for FTMB+Snapshot, periodic snapshots
taken at all middleboxes significantly reduce the throughput. No
packet is processed during a snapshot. Packet queues get full at
early snapshots and remain full afterwards because the incoming
traffic load is at the same rate. More snapshots are taken in a longer
chain. Non-overlapping (in time) snapshots cause shorter service
time at each period and consequently higher throughput drops. An
optimum scheduling to synchronize snapshots across the chain can
reduce this overhead; however, this is not trivial [10].

Chain length impact on latency: We use the same settings as
the previous experiment, except we run single threaded Monitors
due to a limitation of the traffic generator. The latter is not able to
measure the latency of the chain beyond size 2 composed of multi-
threaded middleboxes. We resort to use single threaded Monitors
under the load of 2 Mpps, a sustainable load by all systems.

As shown in Figure 10, FTC’s overhead compared to NF is within
39–104 µs for Ch-2 to Ch-5, translating to roughly 20 µs latency

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

2 3 4 5
Chain Length

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
pp

s)

NF FTC FTMB FTMB+Snapshot

Figure 9: Tput vs. chain length

2 3 4 5
Chain Length

0

50

100

150

200

250

300

L
at

en
cy

(µ
s)

NF FTC FTMB

Figure 10: Latency vs. chain length

40 60 80 100 120 140 160 180

Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

et
s

(C
D

F
)

NF FTC FTMB

Figure 11: Ch-3 per packet latency

2 3 4 5
Replication Factor

0

50

100

150

200

250

L
at

en
cy

(µ
s)

Latency

0
1
2
3
4
5
6
7
8
9

T
hr

ou
gh

pu
t

(M
pp

s)

Throughput

Figure 12: Repl. factor

Firewall
Monitor

SimpleNAT

100

101

102

103

D
el

ay
(m

s)

State recovery Initialization

Figure 13: Recovery time

per middlebox. The overhead of FTMB is within 64–171 µs, approxi-
mately 35 µs latency overhead per middlebox in the chain. As shown
in Figure 11, the tail latency of individual packets passing through
Ch-3 is only moderately higher than the minimum latency. FTC in-
curs 16.5–20.6 µs per middlebox latency which is respectively three
and two orders of magnitudes less than Pico’s and REINFORCE’s,
and is around 2/3 of FTMB’s.

In-chain replication eliminates the communication overhead
with remote replicas. Doing so also does not cause latency spikes
unlike snapshot-based systems. In FTC, packets experience constant
latency, while the original FTMB reports up to 6 ms latency spikes
at periodic checkpoints (e.g., at every 50 ms intervals) [51].

Replication factor impact on performance: For replication factors
of 2–5 (i.e., tolerating 1 to 5 failures), Figure 12 shows FTC’s per-
formance for Ch-5 in two settings where Monitors run with 1 or
8 threads. We report the throughput of 8 threaded Monitor, while
only report the latency of 1 threaded Monitor due to a limitation
of our test harness.

To tolerate 2.5× failures, FTC incurs only 3% throughput over-
head as its throughput decreases to 8.06Mpps. The latency overhead
is also insignificant as latency only increases by 8 µs. By exploiting
the chain structure, FTC can tolerate a higher number of failures
without sacrificing performance. However, the replication factor
cannot be arbitrarily large as encompassing the resulting large
piggyback messages inside packets becomes impractical.

7.5 FTC in Failure Recovery
Recall from § 6, failure recovery is performed in three steps: ini-
tialization, state recovery, and rerouting delays. To evaluate FTC
during recovery, we measure the recovery time of Ch-Rec (see

Table 1), when each of its middleboxes fails separately. Each mid-
dlebox is placed in a different region of our Cloud testbed. As the
orchestrator detects a failure, a new replica is placed in the same
region as the failed middlebox. The head of Firewall is deployed in
the same region as the orchestrator, while the heads of SimpleNAT
and Monitor are respectively deployed in a neighboring region and
a remote region compared to the orchestrator’s region. Since the
orchestrator is also a SDN controller, we observe negligible values
for the rerouting delay, thus we focus on the state recovery delay
and initialization delay.

Recovery time: As shown in Figure 13, the initialization delays
are 1.2, 49.8, and 5.3 ms for Firewall, Monitor, and SimpleNAT,
respectively. The longer the distance between the orchestrator and
the new replica, the higher the initialization delay. The state recov-
ery delays are in the range of 114.38±9.38ms to 270.79±50.47ms2.
In a local area network, FTMB paper [51] reports comparable re-
covery time of ∼100 ms to 250 ms for SimpleNAT. Upon any failure,
a new replicas fetches the state from a remote region in the cloud,
which causes the WAN latency to dominate delay.

Using ping, we measured the network delay between all pairs of
remote regions, and the observed round-trip times confirmed our
results.

FTC replicates the values of state variables, and its state recovery
delay is bounded by the state size of a middlebox. The replication
factor also has a negligible impact on the recovery time of FTC,
since a new instantiated replica fetches state in parallel from other
replicas.

8 RELATEDWORK
In addition to NFV related work discussed in § 2.2, this Section
discusses other relevant systems.

Fault tolerant storage: Prior to FTC, the distributed system lit-
erature used chain and ring structures to provide fault tolerance.
However, their focus is on ordering read/write messages at the pro-
cess level (compared to, middlebox threads racing to access shared
state in our case), at lower non-determinism rates (compared to, per-
packet frequency), and at lower output rates (compared to, several
Mpps releases).

A class of systems adapt the chain replication protocol [58]
for key-value storage systems. In HyperDex [18] and Hibari [21],

2The large confidence intervals reported are due to latency variability in the wide area
network connecting different regions.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

servers shape multiple logical chains replicating different key
ranges. NetChain [27] replicates in the network on a chain of pro-
grammable switches. FAWN [5], Flex-KV [43], and parameter server
[37] leverage consistent hashing to form a replication ring of servers.
Unlike these systems, FTC takes advantage of the natural structure
of service function chains, uses transactional packet processing,
and piggybacks state updates on packets.

Primary backup replication: In active replication [49], all replicas
process requests. This scheme requires determinism in middlebox
operations, while middleboxes are non-deterministic [15, 26]. In
passive replication [8], only a primary server processes requests
and sends state updates to other replicas. This scheme makes no
assumption about determinism. Generic virtual machine high avail-
ability solutions [12, 16, 48] pause a virtual machine per each check-
point. These solutions are not effective for chains, since the chain
operations pauses during long checkpoints.

Consensus protocols: Classical consensus protocols, such as
Paxos [36] and Raft [40] are known to be slow and cause unac-
ceptable low performance if used for middleboxes.

9 CONCLUSION
Existing fault tolerant middlebox frameworks can introduce high
performance penalties when they are used for a service function
chain. This paper presented FTC, a system that takes advantage
of the structure of a chain to provide efficient fault tolerance. Our
evaluation demonstrates that FTC can provide high degrees of fault
tolerance with low overhead in terms of latency and throughput
of a chain. Our implementation is available https://github.com/
eljalalpour/FTSFC.git. This paper does not raise any ethical issues.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd Vyas Sekar and the anonymous
reviewers for their valuable feedback. This work is supported by
the Natural Sciences and Engineering Research Council of Canada.

REFERENCES
[1] 2017. NFV Whitepaper. Technical Report. European Telecommunications Stan-

dards Institute. https://portal.etsi.org/NFV/NFV_White_Paper.pdf
[2] 2019. mazu-nat.click. https://github.com/kohler/click/blob/master/conf/

mazu-nat.click.
[3] 2020. Tuning Failover Cluster Network Thresholds. https://bit.ly/2NC7dGk.

[Online].
[4] Ali Abedi and Tim Brecht. 2017. Conducting Repeatable Experiments in Highly

Variable Cloud Computing Environments. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering (ICPE ’17). ACM, New
York, NY, USA, 287–292. https://doi.org/10.1145/3030207.3030229

[5] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles (SOSP ’09). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/
1629575.1629577

[6] P Ayuso. 2006. Netfilter’s connection tracking system. ;login 31, 3 (2006).
[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,
and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/2620728.
2620744

[8] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. 1993. Dis-
tributed Systems (2Nd Ed.). In Distributed Systems (2Nd Ed.), Sape Mullender (Ed.).
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, Chapter The

Primary-backup Approach, 199–216. http://dl.acm.org/citation.cfm?id=302430.
302438

[9] B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues. RFC 3234.
RFC Editor. 1–27 pages. http://www.rfc-editor.org/rfc/rfc3234.txt

[10] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors
for Reliable Distributed Systems. J. ACM 43, 2 (March 1996), 225–267. https:
//doi.org/10.1145/226643.226647

[11] Adrian Cockcroft. 2012. A Closer Look At The Christmas Eve Outage. http:
//techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html.

[12] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High Availability via Asynchronous Virtual
Machine Replication. In 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 08). USENIX Association, San Francisco, CA.

[13] Dave Dice, Yossi Lev, Virendra J. Marathe, Mark Moir, Dan Nussbaum, and
Marek Olszewski. 2010. Simplifying Concurrent Algorithms by Exploiting
Hardware Transactional Memory. In Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’10). As-
sociation for Computing Machinery, New York, NY, USA, 325–334. https:
//doi.org/10.1145/1810479.1810537

[14] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional Locking II. In Pro-
ceedings of the 20th International Conference on Distributed Computing (DISC’06).
Springer-Verlag, Berlin, Heidelberg, 194–208. https://doi.org/10.1007/11864219_
14

[15] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP ’09).
ACM, New York, NY, USA, 15–28. https://doi.org/10.1145/1629575.1629578

[16] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt, ShiQing Ma, Jian Li, and HaiBing
Guan. 2013. COLO: COarse-grained LOck-stepping Virtual Machines for Non-
stop Service. In Proceedings of the 4th Annual Symposium on Cloud Computing
(SOCC ’13). ACM, New York, NY, USA, Article 3, 16 pages. https://doi.org/10.
1145/2523616.2523630

[17] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Proceedings of the 2015 Internet Measurement Conference (IMC ’15). ACM, New
York, NY, USA, 275–287. https://doi.org/10.1145/2815675.2815692

[18] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex: A Dis-
tributed, Searchable Key-value Store. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’12). ACM, New York, NY, USA, 25–36.
https://doi.org/10.1145/2342356.2342360

[19] Colin J Fidge. 1987. Timestamps inmessage-passing systems that preserve the partial
ordering. Australian National University. Department of Computer Science.

[20] N. Freed. 2000. Behavior of and Requirements for Internet Firewalls. RFC 2979.
RFC Editor. 1–7 pages. http://www.rfc-editor.org/rfc/rfc2979.txt

[21] Scott Lystig Fritchie. 2010. Chain Replication in Theory and in Practice. In
Proceedings of the 9th ACM SIGPLAN Workshop on Erlang (Erlang ’10). ACM, New
York, NY, USA, 33–44. https://doi.org/10.1145/1863509.1863515

[22] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang. 2016. Yoda: A Highly Available
Layer-7 Load Balancer. In Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys ’16). ACM, New York, NY, USA, Article 21, 16 pages.
https://doi.org/10.1145/2901318.2901352

[23] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling Innovation
in Network Function Control. In Proceedings of the 2014 ACM Conference on
SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 163–174. https://doi.org/
10.1145/2619239.2626313

[24] Y. Gu, M. Shore, and S. Sivakumar. 2013. A Framework and Problem State-
ment for Flow-associated Middlebox State Migration. https://tools.ietf.org/html/
draft-gu-statemigration-framework-03.

[25] T. Hain. 2000. Architectural Implications of NAT. RFC 2993. RFC Editor. 1–29
pages. http://www.rfc-editor.org/rfc/rfc2993.txt

[26] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader: A
GPU-accelerated Software Router. SIGCOMM Comput. Commun. Rev. 40, 4 (Aug.
2010), 195–206. https://doi.org/10.1145/1851275.1851207

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35–49. https://www.usenix.org/
conference/nsdi18/presentation/jin

[28] D. Joseph and I. Stoica. 2008. Modeling middleboxes. IEEE Network 22, 5 (Sep-
tember 2008), 20–25. https://doi.org/10.1109/MNET.2008.4626228

[29] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
USENIX Association, Boston, MA, 97–112. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/kablan

https://github.com/eljalalpour/FTSFC.git
https://github.com/eljalalpour/FTSFC.git
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://bit.ly/2NC7dGk
https://doi.org/10.1145/3030207.3030229
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
http://dl.acm.org/citation.cfm?id=302430.302438
http://dl.acm.org/citation.cfm?id=302430.302438
http://www.rfc-editor.org/rfc/rfc3234.txt
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
https://doi.org/10.1145/1810479.1810537
https://doi.org/10.1145/1810479.1810537
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14
https://doi.org/10.1145/1629575.1629578
https://doi.org/10.1145/2523616.2523630
https://doi.org/10.1145/2523616.2523630
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2342356.2342360
http://www.rfc-editor.org/rfc/rfc2979.txt
https://doi.org/10.1145/1863509.1863515
https://doi.org/10.1145/2901318.2901352
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1145/2619239.2626313
https://tools.ietf.org/html/draft-gu-statemigration-framework-03
https://tools.ietf.org/html/draft-gu-statemigration-framework-03
http://www.rfc-editor.org/rfc/rfc2993.txt
https://doi.org/10.1145/1851275.1851207
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1109/MNET.2008.4626228
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan

Fault Tolerant Service Function Chaining SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

[30] J. M. Kang, H. Bannazadeh, and A. Leon-Garcia. 2013. SAVI testbed: Control and
management of converged virtual ICT resources. In 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013). 664–667.

[31] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana:
Controller Fault-tolerance in Software-defined Networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR
’15). ACM, New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/
2774993.2774996

[32] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance for Stateful
Chained Network Functions. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 501–516.
https://www.usenix.org/conference/nsdi19/presentation/khalid

[33] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Ab-
hashkumar, and Aditya Akella. 2016. Paving the Way for NFV: Simplifying Mid-
dlebox Modifications Using StateAlyzr. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 239–253. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/khalid

[34] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297. https://doi.org/10.1145/354871.354874

[35] Sameer G Kulkarni, Guyue Liu, KK Ramakrishnan, Mayutan Arumaithurai, Tim-
othy Wood, and Xiaoming Fu. 2018. REINFORCE: Achieving Efficient Failure
Resiliency for Network Function Virtualization based Services. In 15th USENIX
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT) 18). USENIX Association, 35–49.

[36] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (Dec. 2001),
18–25.

[37] Mu Li, David G. Anderson, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In Operating Systems
Design and Implementation (OSDI). 583–598.

[38] NiciraNetworks. 2019. OpenvSwitch: An open virtual switch. http://openvswitch.
org.

[39] NiciraNetworks. 2019. The published ONOS Docker images. https://hub.docker.
com/r/onosproject/onos/.

[40] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14).
305–319.

[41] Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: Simplifying Distributed SDN Control Planes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 329–345. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-aurojit-scl

[42] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. 2012.
Improving Network Connection Locality on Multicore Systems. In Proceedings of
the 7th ACM European Conference on Computer Systems (EuroSys ’12). ACM, New
York, NY, USA, 337–350. https://doi.org/10.1145/2168836.2168870

[43] Amar Phanishayee, David G. Andersen, Himabindu Pucha, Anna Povzner, and
Wendy Belluomini. 2012. Flex-KV: Enabling High-performance and Flexible KV
Systems. In Proceedings of the 2012 Workshop on Management of Big Data Systems
(MBDS ’12). ACM, New York, NY, USA, 19–24. https://doi.org/10.1145/2378356.
2378361

[44] Rahul Potharaju and Navendu Jain. 2013. Demystifying the Dark Side of the
Middle: A Field Study of Middlebox Failures in Datacenters. In Proceedings of the

2013 Conference on Internet Measurement Conference (IMC ’13). ACM, New York,
NY, USA, 9–22. https://doi.org/10.1145/2504730.2504737

[45] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
ACM, New York, NY, USA, 27–38. https://doi.org/10.1145/2486001.2486022

[46] Paul Quinn and Thomas Nadeau. 2015. Problem Statement for Service Function
Chaining. Internet-Draft. IETF. https://tools.ietf.org/html/rfc7498

[47] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. 2013. Pico Replication:
A High Availability Framework for Middleboxes. In Proceedings of the 4th Annual
Symposium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 1,
15 pages. https://doi.org/10.1145/2523616.2523635

[48] Daniel J Scales, Mike Nelson, and Ganesh Venkitachalam. 2010. The design and
evaluation of a practical system for fault-tolerant virtual machines. Technical
Report. Technical Report VMWare-RT-2010-001, VMWare.

[49] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
https://doi.org/10.1145/98163.98167

[50] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.
2012. Design and implementation of a consolidated middlebox architecture. In
NSDI 12. 323–336.

[51] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Kr-
ishnamurthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Mid-
dleboxes. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM ’15). ACM, New York, NY, USA, 227–240.
https://doi.org/10.1145/2785956.2787501

[52] Robin Sommer, Matthias Vallentin, Lorenzo De Carli, and Vern Paxson. 2014.
HILTI: An Abstract Execution Environment for Deep, Stateful Network Traffic
Analysis. In Proceedings of the 2014 Conference on Internet Measurement Conference
(IMC ’14). ACM, New York, NY, USA, 461–474. https://doi.org/10.1145/2663716.
2663735

[53] P. Srisuresh and K. Egevang. 2001. Traditional IP Network Address Translator
(Traditional NAT). RFC 3022. RFC Editor. 1–16 pages. http://www.rfc-editor.org/
rfc/rfc3022.txt

[54] Rob Strom and Shaula Yemini. 1985. Optimistic Recovery in Distributed Systems.
ACM Trans. Comput. Syst. 3, 3 (Aug. 1985), 204–226. https://doi.org/10.1145/
3959.3962

[55] The AWS Team. 2012. Summary of the October 22, 2012 AWS Service Event in
the US-East Region. https://aws.amazon.com/message/680342/.

[56] The Google Apps Team. 2012. Data Center Outages Generate Big
Losses. http://static.googleusercontent.com/external_content/untrusted_dlcp/
www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf.

[57] Daniel Turull, Peter Sjödin, and Robert Olsson. 2016. Pktgen: Measuring perfor-
mance on high speed networks. Computer Communications 82 (2016), 39 – 48.
https://doi.org/10.1016/j.comcom.2016.03.003

[58] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication for Support-
ing High Throughput and Availability. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6 (OSDI’04).
USENIX Association, Berkeley, CA, USA, 7–7. http://dl.acm.org/citation.cfm?
id=1251254.1251261

[59] O. Huang M. Boucadair N. Leymann Z. Cao J. HuW. Liu, H. Li. 2014. Service func-
tion chaining use-cases. https://tools.ietf.org/html/draft-liu-sfc-use-cases-01.

https://doi.org/10.1145/2774993.2774996
https://doi.org/10.1145/2774993.2774996
https://www.usenix.org/conference/nsdi19/presentation/khalid
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khalid
https://doi.org/10.1145/354871.354874
http://openvswitch.org
http://openvswitch.org
https://hub.docker.com/r/onosproject/onos/
https://hub.docker.com/r/onosproject/onos/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-aurojit-scl
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-aurojit-scl
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2378356.2378361
https://doi.org/10.1145/2378356.2378361
https://doi.org/10.1145/2504730.2504737
https://doi.org/10.1145/2486001.2486022
https://tools.ietf.org/html/rfc7498
https://doi.org/10.1145/2523616.2523635
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/2663716.2663735
https://doi.org/10.1145/2663716.2663735
http://www.rfc-editor.org/rfc/rfc3022.txt
http://www.rfc-editor.org/rfc/rfc3022.txt
https://doi.org/10.1145/3959.3962
https://doi.org/10.1145/3959.3962
https://aws.amazon.com/message/680342/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
https://doi.org/10.1016/j.comcom.2016.03.003
http://dl.acm.org/citation.cfm?id=1251254.1251261
http://dl.acm.org/citation.cfm?id=1251254.1251261
https://tools.ietf.org/html/draft-liu-sfc-use-cases-01

	Abstract
	1 Introduction
	2 Background
	2.1 Challenges
	2.2 Limitations of Existing Approaches

	3 System Design Overview
	3.1 Requirements
	3.2 Design Choices

	4 FTC for a Single Middlebox
	4.1 Middlebox State Replication
	4.2 Concurrent Packet Processing
	4.3 Concurrent State Replication

	5 FTC for a Chain
	5.1 Normal Operation of Protocol
	5.2 Failure Recovery

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup and Methodology
	7.2 Microbenchmark
	7.3 Fault-Tolerant Middleboxes
	7.4 Fault Tolerant Chains
	7.5 FTC in Failure Recovery

	8 Related Work
	9 Conclusion
	References

